Применение экономико-математических методов для решения экономических задач

Реферат

Для большого числа предприятий и организаций основным методом решения задач являются модели теории массового обслуживания. Основными рассматриваемыми единицами в подобных моделях являются каналы обслуживания (линии связи, рабочие точки, станки и т.п.), их производительность и характер потока заявок.

Возможность применения теории массового обслуживания для исследования предметной области определяется следующими факторами:

1. Количество заявок в системе должно быть достаточно велико (массово).

2. Все поступающие заявки, должны быть однотипными.

3. Потоки заявок должны быть Пуассоновскими.

4. Последовательность обработки заявок, должна быть жестко зафиксирована.

Применение теории массового обслуживания позволяет оценить пропускную способность предприятия или организации, количество заказов, находящихся в производстве, время пребывания заявок и т.д.

2.Методические основы экономико-математических методов

В экономико-математическом анализе используются математические модели, описывающие изучаемое явление или процесс с помощью уравнений, неравенств, функций и других математических средств. Различают математические модели с количественными характеристиками, записанными в виде формул; числовые модели с конкретными числовыми характеристиками; логические, записанные с помощью логических выражений, и графические, выраженные в графических образах.

Систематизировать применяемые в анализе деятельности предприятия методы можно по различным признакам. Наиболее целесообразной представляется классификация экономико-математических методов по содержанию метода, т.е. по принадлежности к определенному разделу современной математики.

Сформулированная математическая задача экономического анализа может быть решена одним из наиболее разработанных математических методов. Поэтому классификация в значительной мере условна. То есть, как уже говорилось ранее, задачи управления запасами могут решаться методами математического программирования и с применением динамических методов.

Эконометрические методы строятся на синтезе трех областей знаний: экономики, математики и статистики. Основа эконометрии – экономическая модель, под которой понимается схематическое представление экономического явления или процесса при помощи научной абстракции, отражения их характерных черт. Наибольшее распространение получил метод анализа «затраты – впуск» (межотраслевого баланса).

7 стр., 3365 слов

Особенности математического моделирования в экономике

... определение основных понятий математического моделирования социально-экономических систем; построение классификации экономико-математических методов и моделей; выявление ключевых особенностей математических методов в экономике; решение прикладной задачи с помощью выбранного экономико-математического метода. 1.1 Основные понятия математического моделирования социально-экономических систем ...

Это матричные (балансовые) модели, строящиеся по шахматной схеме и позволяющие в наиболее компактной форме представить взаимосвязь затрат и результатов производства. Удобство расчетов и четкость экономической интерпретации – главные особенности матричных моделей.

Математическое программирование – важный раздел современной прикладной математики. Методы математического программирования служат основным средством решения задач оптимизации производственно-хозяйственной деятельности. По своей сути эти методы есть средство плановых расчетов. Их ценность для экономического анализа выполнения планов в том, что они позволяют оценивать напряженность плановых заданий, определять лимитирующие группы оборудования, виды сырья и материалов, получать оценки дефицитности произведенных ресурсов и т.п. Основными являются методы линейного программирования (симплексный метод, транспортная задача) и динамического программирования.

Под исследованием операций подразумеваются разработка методов целенаправленных действий (операций), количественная оценка полученных решений и выбор наилучшего из них. Предметом исследования операций являются экономические системы, в том числе производственно-хозяйственная деятельность предприятий. Цель – такое сочетание структурных взаимосвязанных элементов систем, которое в наибольшей степени отвечает задаче получения наилучшего экономического показателя из ряда возможных. Наиболее распространены методы управления запасами, теории игр и массового обслуживания, сетевые методы планирования и управления.

Математическое моделирование экономических явлений и процессов является важным инструментом экономического анализа. Оно дает возможность получить четкое представление об исследуемом объекте, охарактеризовать и количественно описать его внутреннюю структуру и внешние связи.[22, 43-47]

Экономико-математическая модель должна быть адекватной действительности, отражать существенные стороны и связи изучаемого объекта. Отметим принципиальные черты, характерные для построения экономико-математической модели любого вида. Процесс моделирования можно условно подразделить на три этапа:

1. анализ теоретических закономерностей, свойственных изучаемому явлению или процессу, и эмпирических данных о его структуре и особенностях; на основе такого анализа формируются модели;

2. определение методов, с помощью которых можно решить задачу;

3. анализ полученных результатов.

Теория игр исследует оптимальные стратегии в различных ситуациях, в которых может находиться предприятие. К ним относятся ситуации, связанные с выбором наиболее выгодных производственных решений системы научных и хозяйственных экспериментов, с организацией статистического контроля, хозяйственных взаимоотношений между предприятиями промышленности и других отраслей. Формализуя конфликтные ситуации математически, их можно представить как игру двух, трех и т. д. игроков, каждый из которых преследует цель максимизации своей выгоды, своего выигрыша за счет другого. Поэтому для поиска производственно-хозяйственных решений на предприятиях чаще используют именно теорию игр.

8 стр., 3795 слов

Метод решения многомерной задачи оптимального управления динамикой ...

... который может быть использован для решения задач оптимального управления экономической системой на региональном уровне, в том числе в случае учета инновационных процессов. Разработанный метод используется на факультете «Прикладная ... (Чебоксары, 25 октября 2006 г.); Воронежской зимней математической школе «Современные методы теории функций и смежные проблемы» (Воронеж, 27 января - 2 февраля 2007 ...

Решение подобных задач требует определенности в формулировании их условий: установления количества игроков и правил игры, выявления возможных стратегий игроков, возможных выигрышей (отрицательный выигрыш понимается как проигрыш).

Важным элементом в условии задач является стратегия, т.е. совокупность правил, которые в зависимости от ситуации в игре определяют однозначный выбор данного игрока. Количество стратегий у каждого игрока может быть конечным и бесконечным, отсюда и игры подразделяются на конечные и бесконечные. При исследовании конечной игры задаются матрицы выигрышей, а бесконечной — функции выигрышей. Для решения задач применяются алгебраические методы, основанные на системе линейных уравнений и неравенств, итерационные методы, а также сведение задачи к некоторой системе дифференциальных уравнений.

На промышленных предприятиях теория игр может использоваться для выбора оптимальных решений, например при создании рациональных запасов сырья, материалов, полуфабрикатов, в вопросах качества продукции и других экономических ситуациях. В первом случае противоборствуют две тенденции: увеличения запасов, в том числе и страховых, гарантирующих бесперебойную работу производства; сокращения запасов, обеспечивающих минимизацию затрат на их хранение; во втором стремления к выпуску большего количества продукции, ведущего к снижению трудовых затрат; к повышению качества, сопровождающемуся часто уменьшением количества изделий и, следовательно возрастанием трудовых затрат. В машиностроительном производстве противоборствующими направлениями являются стремление к максимальной экономии металла в конструкциях, с одной стороны, и обеспечение необходимой прочности конструкций с другой.

Природные условия (условия неопределенности) нередко сказываются на эффективности работы промышленных предприятий.

Данные, необходимо для принятия решения в условии неопределенности, обычно задаются в форме матрицы, строки которой соответствуют возможным действиям, а столбцы – возможным состояниям системы.[2, 270]

Пусть, например, из некоторого материала требуется изготовить изделие, долговечность которого при допустимых затратах невозможно определить. Нагрузки считаются известными. Требуется решить, какие размеры должно иметь изделие из данного материала.

Варианты решения таковы:

  • Е1 – выбор размеров из соображений максимальной долговечности ;
  • Еm– выбор размеров из соображений минимальной долговечности ;
  • Ei– промежуточные решения.