Телекоммуникационные технологии в экономических информационных системах

Реферат

Процесс взаимодействия взаимосвязанных и взаимовлияющих рыночных субъектов называется коммуникацией.

Существует достаточное число определений понятия «коммуникация», но в основном они сводятся к следующему. Во-первых, коммуникация — это процесс передачи информации, а во-вторых, — процесс, посредством которого некоторая идея передаётся от источника к получателю с целью изменить поведение этого получателя. Таким образом, основная цель коммуникации заключается в убеждении, контроле и общении.

Коммуникация (от лат. communicatio — сообщение, передача) — общение, обмен мыслями, сведениями, идеями и т.д.; передача того или иного контента от одного сознания (коллективного или индивидуального) другому посредством знаков, зафиксированных на материальных носителях.

Технология — это комплекс научных и инженерных знаний, реализованных в приемах труда, наборах материальных, технических, энергетических, трудовых факторов производства, способах их соединения для создания продукта или услуги, отвечающих определенным требованиям.

Информационная технология (а телекоммуникационная технология относится к информационным) — это комплекс взаимосвязанных, научных, технологических, инженерных дисциплин, изучающих методы эффективной организации труда людей, занятых обработкой и хранением информации; вычислительную технику и методы организации и взаимодействия с людьми и производственным оборудованием, их практические приложения, а также связанные со всем этим социальные, экономические и культурные проблемы. Сами информационные технологии требуют сложной подготовки, больших первоначальных затрат и наукоёмкой техники. Их введение должно начинаться с создания математического обеспечения, формирования информационных потоков в системах подготовки специалистов.

1. Телекоммуникационные технологии АИС

телекоммуникационная технология топология сеть

Идея расширения функциональных возможностей и масштабов реализации АИС привели к созданию так называемых телекоммуникационных технологий, основанных на организации сетевого взаимодействия вычислительных ресурсов ЭВМ. Сеть ЭВМ — это совокупность технических, программных и коммуникационных средств, обеспечивающих эффективное распределение вычислительных ресурсов.

В структурном плане сеть ЭВМ состоит из двух основных элементов, взаимодействующих между собой, — сервера и рабочих станций. В роли сервера выступает центральная ЭВМ (хост-ЭВМ) — узел сети. Сервер располагает и управляет использованием разделяемых ресурсов — БД, внешней памяти, принтеров и др. Рабочие (клиентские) станции представляют собой профессиональные ЭВМ, предназначенные для работы пользователей в интерактивном режиме с центральной ЭВМ. Это могут быть АРМ, имеющие скромные по сравнению с центральной ЭВМ вычислительные и информационные ресурсы.

11 стр., 5276 слов

Формирование информационной компетентности школьников на х технологии

... необходимость коренного обновления системы образования, методологии и технологии организации учебно-воспитательного процесса в учебных заведениях различного типа. Инновационная направленность ... области «Технология» 2.1 Формирование ИКТ-компетенции школьников на уроках технологии 2.2 Формирование готовности учителя технологии использовать информационно-коммуникационные технологии в профессиональной ...

В организации сетевого обмена данными существует несколько схем взаимодействия рабочих станций и сервера. В схеме «клиент — сервер» рабочая станция (клиент) получает от сервера те функции и те ресурсы, которые необходимы клиенту для решения его задачи. В подобных случаях состав и объём ресурсов обычно обусловлены содержанием запроса клиента к серверу. Это могут быть прикладные программы, сервис печати документов, файлы, которые соответствуют условию, указанному в запросе. Подобная схема широко используется в современных локальных вычислительных сетях. Схема «файл — сервер» представляет собой многопользовательскую систему управления данными. Здесь данные размещаются централизованно, в одном узле вычислительной сети под управлением сервера, а СУБД и другие программные ресурсы имеются на каждой рабочей станции. СУБД ведёт обработку данных, а сервер выполняет роль управляющей программы (драйвера) магнитного диска, на котором хранятся БД.

Значительное место в сетевом обмене принадлежит серверам БД. К числу основных функций сервера БД относятся: организация размещения данных на магнитных носителях, хранение БД, обеспечение доступа пользователей к БД, поддержка БД в актуальном состоянии, реорганизация БД и др.

Транзакция, Репликация

В организации ведения распределённых БД существует несколько видов репликации. По уровню распространения различают одностороннюю и многостороннюю репликации. При односторонней репликации данные изменяются только в одной БД, а в других данные не изменяются. При многосторонней репликации данные корректируются во всех БД. По времени проведения можно выделить репликации реального времени и отложенные репликации. Репликации реального времени выполняются непосредственно после изменения состояния объектов. Отложенные репликации выполняются по определённому условию или событию, например, пункту в графике администратора БД.

Сетевая технология обеспечивает:

  • построение распределённых хранилищ информации;
  • расширение перечня решаемых задач по обработке информации;
  • повышение надёжности АИС за счёт дублирования работы набора ЭВМ;
  • создание новых видов задач и услуг в направлении информационного взаимодействия, например, электронной почты;
  • снижение стоимости обработки информации.

В общем случае структура сетевой технологии должна обладать совокупностью определённых свойств, к ним относятся:

  • открытость — возможность включения в сеть дополнительных модификаций современных ЭВМ и других сетевых устройств;
  • ресурсоёмкость — способность технических и аппаратных средств хранить, оперативно обрабатывать и представлять широкий набор данных;
  • динамичность — минимизация времени ответа ЭВМ сети на запрос пользователя;
  • эргономичность — развитый интерфейс по взаимодействию с ЭВМ, широкий набор сервисных функций по информационному обеспечению пользователя и создание адекватной ему информационной среды;
  • автономность — относительно независимая работа сетей различных уровней;
  • адаптивность — обеспечение совместимости и взаимодействия технических и программных средств при изменении требований надсистемы и изменении конфигурации сети;

— * самоорганизация — защита данных от несанкционированного доступа, автоматическое восстановление работоспособности в случае аварийных сбоев, высокая достоверность передаваемой информации.

14 стр., 6508 слов

Связь и телекоммуникации

... рынков и современных видов услуг). 2. Россия в мировом процессе развития средств связи, компьютеризации и информатизации Создание современной динамичной рыночной экономики с механизмом саморегуляции невозможно без надёжной системы связи и телекоммуникаций, которая ...

Локальная вычислительная сеть, Глобальная вычислительная сеть

Отдельные ЛВС и ГВС могут объединяться, и тогда возникает сложная сеть, которую называют распределённой. Таким образом, в общем виде вычислительные сети представляют собой систему компьютеров, объединённых линиями связи и специальными устройствами, позволяющими передавать без искажения и перенаправлять потоки данных между компьютерами. Линии связи вместе с устройствами передачи и приёма данных называют каналами связи, а устройства, производящие переключение потоков данных в сети, можно определить общим названием — узлы коммутации.

2. Топология вычислительных сетей

Важнейшей характеристикой сети является топология. Она определяет способ соединения ЭВМ в сети. Различают два вида топологии — физическую и логическую. Физическая топология — это реальная схема соединения технических устройств сети посредством каналов связи. Логическая топология — это установленная схема потоков данных между техническими устройствами сети. Термин «топология сетей» характеризует физическое расположение компьютеров, узлов коммутации и каналов связи в сети.

топологии ЛВС

Топология «звезда» характерна тем, что в ней все узлы соединены с одним центральным узлом коммутации (ЦУК) (рис. 1).

Рис. 1. Звездообразная топология сети

Достоинство подобной структуры в экономичности и удобстве с точки зрения организации управления взаимодействием компьютеров (абонентов).

Звездообразную сеть легко расширить, поскольку для добавления нового компьютера нужен только один новый канал связи. Существенным недостатком звездообразной топологии можно назвать низкую надёжность — при отказе центрального узла выходит из строя вся сеть.

Кольцевая топология характерна тем, что компьютеры в этой сети подключаются к повторителям (репитерам) сигналов, связанным в однонаправленное кольцо (рис. 2).

Рис. 2. Кольцевая топология сети

По методу доступа к каналу связи различают два основных типа кольцевых сетей: маркерное и тактированное кольца. В маркерных кольцевых сетях по кольцу передается специальный управляющий маркер (метка), разрешающий передачу сообщений из компьютера, который им управляет в данный момент времени. Если компьютер получил маркер и у него есть сообщение для передачи, то он «захватывает» маркер и передаёт сообщение в кольцо. Данные проходят через все повторители, пока не окажутся на том повторителе, к которому подключен компьютер с адресом, указанным в данных. Получив подтверждение, передающий компьютер создаёт новый маркер и возвращает его в сеть. При отсутствии у компьютера сообщения для передачи он пропускает движущийся по кольцу маркер.

В тактированном кольце по сети непрерывно вращается замкнутая последовательность тактов — специально закодированных интервалов фиксированной длины. В каждом такте имеется бит-указатель занятости. Свободные такты могут заполняться передаваемыми сообщениями по мере необходимости либо за каждым узлом могут закрепляться определенные такты.

К достоинствам кольцевых сетей относится равенство компьютеров по доступу к сети и высокая расширяемость. К недостаткам следует отнести выход из строя всей сети при выходе из строя одного повторителя и остановку работы сети при изменении ее конфигурации.

Магистральная топология («шина»), в локальных сетях применяется очень широко. Здесь все компьютеры подключены к единому каналу связи с помощью трансиверов (приёмопередатчиков) (рис. 3).

Рис. 3. Магистральная топология сети

С двух сторон канала имеются пассивные терминаторы, которые служат для поглощения передаваемых сигналов. От передающего компьютера данные направляются всем компьютерам сети, однако воспринимаются только тем компьютером, адрес которого указан в передаваемом ансамбле данных. Причём в каждый момент только один компьютер может вести передачу. Если один компьютер выйдет из строя, это не скажется на работе остальных, что относится к достоинствам шинной топологии. Другие достоинства шины — высокая расширяемость и экономичность в организации каналов связи. Как недостаток расценивается уменьшение пропускной способности сети при значительных объёмах трафика — объёма передаваемых по сети данных.

В настоящее время часто используются топологии, основанные на сочетании достоинств и нивелировании недостатков базовых топологий — «звезда — шина», «звезда — кольцо». Топология «звезда — шина» чаще всего выглядит как объединение с помощью магистральной шины нескольких звездообразных сетей. При топологии «звезда — кольцо» несколько звездообразных сетей соединяется своими центральными узлами коммутации в кольцо.

Развитие локальных и комбинированных топологий при условии удлинения линий связи приводит к необходимости их разделения и создания распределённых сетей. Это обусловливает особенности топологии ГВС. В распределённых сетях компонентами служат не отдельные компьютеры, а отдельные локальные сети, или сегменты. Узлами коммутации таких сетей становятся активные концентраторы и мосты — устройства, обеспечивающие коммутацией линии связи неоднородного класса и усиливающие проходящие через них сигналы. Мосты, кроме того, ещё и управляют потоками данных между сегментами сети.

При соединении удаленных на большие расстояния компьютеров или сетей используются каналы связи и устройства коммутации, называемые маршрутизаторами и шлюзами. Маршрутизаторы взаимодействуют друг с другом и соединяются между собой каналами связи, образуя распределённый магистральный канал связи. Для согласования параметров данных (форматов, уровней сигналов, протоколов и т.п.), передаваемых по магистральному каналу связи, между маршрутизаторами и терминальными компонентами включаются устройства сопряжения. При подключении к магистральному каналу вычислительных сетей (например, мэйнфреймов), которые невозможно согласовать с помощью стандартных устройств сопряжения, используются стандартные средства, называемые шлюзами. Терминальными абонентами называют отдельные компьютеры, локальные или распределённые сети, через маршрутизаторы подключенные к магистральному каналу. Таким образом, возникает ГВС, типовая топология которой приведена на рис. 4.

Рис. 4. Типовая топология ГВС: К — концентратор; Мст — мост; М — маршрутизатор; Ш — шлюз; У — устройство сопряжения

Глобальные сети могут объединяться между собой путём соединения через маршрутизаторы магистральных каналов, что в конечном итоге приводит к созданию мировой информационно-вычислительной сети. Эти сети относятся к классу открытых систем и создаются на основе эталонной модели.

3. Базовая эталонная модель взаимодействия открытых сетей

Базовая эталонная модель (OSI — Open System Interconnection) — стандарт 7498 ISO. Модель OSI можно назвать гибкой в том смысле, что она допускает эволюцию сетей в зависимости от развития теории и новых технических достижений, а также обеспечивает постепенность перехода от существующих реалий к новым стандартам. Основное понятие модели — система. Система — автономная совокупность вычислительных средств, осуществляющих обработку данных прикладных задач пользователей.

Прикладной процесс, реализующий определённую задачу пользователя — важнейший компонент системы, обеспечивающий обработку информации. Роль прикладного процесса в системе выполняет человек-оператор, программа или группа программ. Основная задача сети состоит в обеспечении взаимодействия прикладных процессов, проходящих в различных системах. При этом система считается открытой, если она выполняет стандартное множество функций взаимодействия, принятое в сети.

Область взаимодействия открытых систем определяется последовательно-параллельными группами функций или модулями взаимодействия, реализуемыми программными или аппаратными средствами. Модули, образующие область взаимодействия прикладных процессов и физических средств соединения, делятся на семь иерархических уровней. Каждый из них выполняет определённую функциональную задачу (табл. 1).

В системе передачи физический, канальный и сетевой уровни вместе с прикладными процессами образуют область обработки данных, реализующих информационные процессы, выполняемые в системе. Процессы этой области используют сервис по транспортировке данных транспортного уровня, который осуществляет процедуры передачи информации от системы-отправителя к системе-адресату. Транспортный, сеансовый, представительный и прикладной уровни образуют область передачи данных между множеством взаимодействующих систем, реализуют коммуникационные процессы по транспортировке данных. Протоколы ОС сети реализуют единый интерфейс между ОС разнотипных ЭВМ. Основополагающим в этом случае становится принцип виртуальности, определяющий общность процессов через виртуальный терминал, виртуальный файл, виртуальное задание и т. д.

Существенно для прикладных процессов включение в систему обмена таких каналов связи, которые оптимизируют время прохождения данных. Важной здесь становится также и реализация взаимодействия процессов удалённых ЭВМ с управляющими блоками сети. В логическом отношении единую ОС должен образовывать набор программных и аппаратных протоколов информационного обмена и процедур, осуществляющих интерфейс управляющих сигналов и данных сети, вне зависимости от способа и места их реализации.

Таблица 1 — Характеристика уровней взаимодействия открытых систем

Наименование

Основные задачи и реализуемые функции

Физический

Сопряжение физического канала. Установление, поддержка и разъединение физического канала

Канальный

Управление передачей по информационному каналу. Управление передачей кадров, контроль данных, обеспечение прозрачности и проверка состояния информационного канала. Обрамление массивов служебными символами, управление каналом

Сетевой

Маршрутизация пакетов. Управление коммуникационными ресурсами, маршрутизация пакетов, обрамление служебными символами для управления сетью

Транспортный

Управление логическими каналами. Управление информационными потоками, организация логических каналов между процессами, обрамление служебными символами запроса и ответа

Сеансовый

Обеспечение сеансов связи. Организация поддержки и окончания сеансов связи, интерфейс с транспортным уровнем

Представительный

Параметрическое отображение данных. Генерация и интерпретация команд взаимодействия процессов. Представление данных программе пользователей

Прикладной

Выполнение процессов. Вычислительные, информационно-поисковые и справочные работы. Логическое преобразование информации пользователей

Функции, выполняемые протоколами уровней в различных системах, принято объединять в группы, именуемые службами. Транспортная служба обеспечивает выполнение задач, связанных с передачей информации через коммуникационную подсеть. Она охватывает транспортный, сетевой, канальный и физический уровни. Над ней находится абонентская служба. Эта служба располагается на прикладном, представительном и сеансовом уровнях и предназначена для обеспечения соединения прикладных процессов с транспортной службой. Соответственно семи уровням взаимодействия открытых систем вводится иерархия семи групп протоколов. Протоколы именуются так же, как уровни. В соответствии с точками приложения иерархия протоколов делится на три специфические группы:

  • физический (стандартный физический интерфейс Х.21) и канальный (стандарт HDLC — High level Data Link Control — высший уровень управления каналом данных) протоколы;
  • протоколы транспортного и сетевого уровней, которые реализуют сквозное взаимодействие абонентских сетей.

Здесь сетевые уровни и сетевой процесс коммуникационных систем инициируют компоненты, связывающие последовательность канальных соединений в единую сквозную систему коммуникационной подсети. При этом для соединения оконечного оборудования с сетью пере­дачи данных очень часто используют протоколы Х.25 (стандарт МККТТ — Международного консультативного комитета по телеграфии и телефонии, CCITT — Consultative Committee for International Telegraphy and Telephony).

Рекомендация Х.25 включает в себя протоколы трех нижних уровней эталонной модели: на физическом уровне — стандартный физический интерфейс Х.21, на канальном уровне — процедуру управления каналом LAPB — Link Access Procedure Balanced (подмножество HDLC) и на сетевом уровне — протокол X. 25/3 обмена пакетами между оконечным оборудованием и сетью передачи данных;

  • протоколы трёх верхних уровней (прикладного, представительного, сеансового), образующие группу, связанную с прикладными процессами. Эти уровни ответственны за последовательность канальных соединений.

Интеграция однородных глобальных сетей, использующих протокол Х.25, осуществляется на базе известного протокола Х.75, обеспечивающего логические соединения абонентов через различные сети. В неоднородных сетях используется межсетевой протокол IP (Internet work Protocol) в его стандартизованной версии. Общий принцип функционирования транслятора IP состоит в том, что шлюзы, узлы и станции локальных сетей используют датаграммный протокол, расположенный на транспортном уровне сети. Пакеты, транспортируемые между сетями, идентифицируются в шлюзе и упаковываются в IР-датаграммы, в заголовке которых содержится глобальный адрес места назначения.

Увеличение разнообразия различных архитектур связи побудило ISO направить значительные усилия на разработку стандарта архитектуры связи, который позволил бы системам открыто связываться между собой. Протоколы, реализующие уровни обмена данными, должны быть предусмотрены в каждом узле сети.

Уровень канала передачи данных и находящийся под ним физический уровень обеспечивают канал безошибочной передачи между двумя узлами в сети. Функция физического уровня заключается в гарантии того, что символы, поступающие в физическую среду передачи на одном уровне канала, достигнут другого конца. При использовании этой услуги по транспортировке символов задача протокола канала состоит в обеспечении надёжной передачи блоков данных по каналу.

Функция сетевого уровня состоит в том, чтобы обеспечить передачу данных по сети от узла передачи до узла назначения. Этот уровень предусматривает также управление потоком или перегрузками в целях предотвращения переполнения сетевых ресурсов, которое может привести к прекращению работы.

Четыре верхних уровня предоставляют услуги самим оконечным пользователям и, таким образом, связаны с ними, а не с сетью.

Транспортный уровень обеспечивает надежный, последовательный обмен данными между двумя оконечными пользователями (для этой цели на транспортном уровне используется услуга сетевого уровня), а также управляет потоком, чтобы гарантировать правильный приём блоков данных.

Существование сеанса между двумя пользователями означает необходимость установления и прекращения сеанса. Это делается на уровне сеанса. Этот уровень при необходимости управляет переговорами, чтобы гарантировать правильный обмен данными.

Уровень представления управляет и преобразует синтаксис блоков данных, которыми обмениваются оконечные пользователи, а протоколы прикладного уровня придают соответствующий смысл обмениваемой информации. Блоки или кадры данных, передаваемые по каналу связи через сеть, состоят из пакетов, а также управляющей информации в виде заголовков и окончаний, добавляемых к пакету непосредственно перед его отправлением из узла. В каждом принимающем узле управляющая информация отделяется от остальной части пакета, а затем вновь добавляется, когда этот узел в свою очередь передаёт пакет по каналу в следующий соседний узел. Этот принцип добавления управляющей информации к данным в архитектуре OSI расширен и включает возможность добавления управляющей информации на каждом уровне архитектуры.

Заключение

Таким образом, телекоммуникационные технологии в экономических информационных системах — это поиск информации с применением гиперссылок, электронной почты, передачи файлов, сетевых конференций, групп новостей из списка рассылки, досок объявлений, WEB-бизнеса и др.

Технический прогресс не стоит на месте, и информационные и телекоммуникационные технологии по-прежнему будут приносить фундаментальные изменения в то, как мы живём и работаем. В контексте мировой экономики информационные и телекоммуникационные технологии станут жизненно важным компонентом стабильного экономического роста и процветания региона.

Список используемых источников

1. Акимова Е.В., Карпов Э.А., Акимов Д.А., Крахт В.Б. Информационные системы и технологии в экономике и управлении: Учебное пособие. — Старый Оскол: ООО «ТНТ», 2007. — 304 с.

2. Информационные системы в экономике: учеб. для студ. высш. учеб. Заведений / В.Б. Уткин, К.В. Балдин. — 4-е изд., испр. — М.: Издательский центр «Академия», 2008. — 288 с.

3. Информационные системы в экономике: Учеб. пособие / Под ред. проф. Д.В. Чистова. — М.: ИНФРА-М, 2009. — 234 с. — (Высшее образование).

4. Информационные системы в экономике: Учеб. пособие / Под ред. проф. А.Н. Романова, проф. Б.Е. Одинцова — М.: Вузовский учебник, 2009. — 410 с.

5. Информационные системы в экономике: учебник для студентов вузов, обучающихся по специальностям «Финансы и кредит», «Бухгалт. учёт, анализ и аудит» / Г.Н. Исаев. — 4-е изд., стер. — М.: Издательство «Омега-Л», 2011. — 462 с.: ил., табл. — (Высшее экономическое образование).

6. Информационные системы и технологии управления: учебник для студентов вузов, обучающихся по направлениям «Менеджмент» и «Экономика», специальностям «Финансы и кредит», «Бухгалтерский учёт, анализ и аудит» / под ред. Г.А. Титоренко. — 3-е изд., перераб. и доп. — М.: ЮНИТИ-ДАНА, 2010. — 591 с. — (Серия «Золотой фонд российских учебников»).

7. Информационные технологии в экономике и управлении: учебник / под ред. проф. В.В. Трофимова. — М.: Издательство Юрайт; ИД Юрайт, 2011. — 478 с. — Серия: Основы наук.

8. Романов В.П. Интеллектуальные информационные системы в экономике: учебное пособие / под ред. д.э.н., проф. Н.П. Тихомирова. — 2-е изд., стереотип. — М.: Издательство «Экзамен», 2007. — 496 с. (Серия «Учебник Плехановской академии»).