Экономический смысл производной

Реферат

Понятие функции является одним из основных понятии математики. Оно не возникло сразу в таком виде, как мы им пользуемся сейчас, а, как и другие фундаментальные понятия прошло длинный путь диалектического и исторического развития. Идея функциональной зависимости восходит к древнегреческой математике. Например, изменение площади, объема фигуры в зависимости от изменения ее размеров. Однако древними греками идея функциональной зависимости осознавалась интуитивно.

Уже в 16 — 17 в. в, техника, промышленность, мореходство поставили перед математикой задачи, которые нельзя было решить имеющимися методами математики постоянных величин. Нужны были новые математические методы, отличные от методов элементарной математики.

Впервые термин «функция» вводит в рассмотрение знаменитый немецкий математик и философ Лейбниц в 1694 г. Однако, этот термин (определения он не дал вообще) он употребляет в узком смысле, понимая под функцией изменение ординаты кривой в зависимости от изменения ее абсциссы. Таким образом, понятие функции носит у него «геометрический налет». В современных терминах это определение связано с понятием множества и звучит так: «Функция есть произвольный способ отображения множества А = {а} во множество В = {в}, по которому каждому элементу аА поставлен в соответствие определенный элемент вВ. Уже в этом определении не накладывается никаких ограничений на закон соответствия (этот закон может быть задан Формулой, таблицей, графиком, словесным описанием).

Главное в этом определении: аА!bB. Под элементами множеств А и В понимаются при этом элементы произвольной природы.

В математике XVII в. самым же большим достижением справедливо считается изобретение дифференциального и интегрального исчисления. Сформировалось оно в ряде сочинений Ньютона и Лейбница и их ближайших учеников. Введение в математику методов анализа бесконечно малых стало началом больших преобразований. Но наряду с интегральными методами складывались и методы дифференциальные. Вырабатывались элементы будущего дифференциального исчисления при решении задач, которые в настоящее время и решаются с помощью дифференцирования. В то время такие задачи были трех видов: определение касательных к кривым, нахождение максимумов и минимумов функций, отыскивание условий существования алгебраических уравнений квадратных корней.

3 стр., 1249 слов

Особенности функционирования экономических терминов в современном ...

... поле, многозначность, точность, краткость и других аспектов. Выводы Во втором разделе данной работы подробно рассматривалось понятие «термин», его характеристика и функции, разграничение понятий «термин» и ... на определенные «слои». В результате многочисленных исследований, лексический состав научного текста последовательно делится на три большие раздела: на «общеупотребительную лексику», « ...

Первый в мире печатный курс дифференциального исчисления опубликовал в 1696 г. Лопиталь. Этот курс состоит из предисловия и 10 глав, в которых излагаются определения постоянных и переменных величин и дифференциала, объясняются употребляющиеся обозначения dx, dy, и др.

Появление анализа бесконечно малых революционизировало всю математику, превратив ее в математику переменных величин.

Исследование поведения различных систем (технические, экономические, экологические и др.) часто приводит к анализу и решению уравнений, включающих как параметры системы, так и скорости их изменения, аналитическим выражением которых являются производные. Такие уравнения, содержащие производные, называются дифференциальными.

В своей же работе я хочу подробнее остановится на приложениях производной.

Экономическое приложение производной.

Экономическая интерпретация производной

В экономической теории активно используется понятие «маржинальный», что означает «предельный». Введение этого понятия в научный оборот в XIX веке позволило создать совершенно новый инструмент исследования и описания экономических явлений — инструмент, посредством которого стало возможно ставить и решать новый класс научных проблем.

Классическая экономическая теория Смита, Рикардо, Милля обычно имела дело со средними величинами: средняя цена, средняя производительность труда и т.д. Но постепенно сложился иной подход. Существенные закономерности оказалось можно обнаружить в области предельных величин.

Предельные или пограничные величины характеризуют не состояние (как суммарная или средняя величины.), а процесс, изменение экономического объекта. Следовательно, производная выступает как интенсивность изменения некоторого экономического объекта (процесса) по времени или относительно другого исследуемого фактора.

Надо заметить, что экономика не всегда позволяет использовать предельные величины в силу прерывности (дискретности) экономических показателей во времени (например, годовых, квартальных, месячных и т.д.).

В то же время во многих случаях можно отвлечься от дискретности и эффективно использовать предельные величины.

Рассмотрим ситуацию: пусть y — издержки производства, а х — количество продукции, тогда D x — прирост продукции, а D y — приращение издержек производства.

В этом случае производная выражает предельные издержки производства и характеризует приближенно дополнительные затраты на производство дополнительной единицы продукции ,где MC – предельные издержки (marginal costs); TC – общие издержки (total costs); Q — количество.

Геометрическая интерпретация предельных издержек — это тангенс угла наклона касательной к кривой в данной точке (см. рис.).

4 стр., 1879 слов

Общая и предельная полезность. Закон убывающей предельной полезности

... стороны теоретиков предельной полезности. В чем их суть? Если товар покупается на рынке, то это происходит не потому, что кто-то расценил затраты труда на производство товара как общественно ... человека. При этом речь идёт не вообще о величине пользы, а о предельной полезности вещи. 2. Предельная полезность блага – это полезность единицы (наименьшая польза) из имеющегося запаса данного вида ...

Аналогичным образом могут быть определены и многие другие экономические величины, имеющие предельный характер.

Другой пример — категория предельной выручки (MR— marginal revenue) — это дополнительный доход, полученный при переходе от производства n-ной к (n+1)-ой единице продукта.

Она представляет собой первую производную от выручки: ., При этом R= PQ, где R–выручка (revenue); P–цена (price)., Таким образом ,

Это равенство верно относительно условий совершенной конкуренции, когда экономические агенты каждый по отдельности не могут оказать влияния на цену.

Обратимся к теориям потребления: кардиналистской и ординалистской.

Кардиналистский (количественный) подход к теории цен предполагает равное влияние величин полезности товара и затрат на его производства на формирование цены. В основе рассматриваемого подхода — исследования А. Маршалла.

Ординалистский (Порядковый) подход к теории цен разрабатывался И. Фишером, В. Парето. Суть данного подхода состоит в том, что потребители, имеющие определенный уровень доходов, сравнивают между собой цены и полезность различных наборов экономических благ и отдают предпочтение тем наборам, которые при сравнительно низких ценах имеют максимальную полезность для конкретного потребителя.

В соответствии с первой, суммарную полезность U для любого субъекта, если в экономике существует n потребительских благ в объемах х 1 , x 2 ,… х n , можно выразить в виде кардиналистской функции полезности:

U= U(х1 , x2 ,… xn ).

Предельные полезности MU товаров выступают в качестве ее частных производных: . Они показывают, на сколько изменяется полезность всей массы благ, достающихся субъекту, при бесконечно малом приращении количества блага i (i=1,2…n)

В ординалистской теории полагается, что потребитель оценивает полезность не отдельных благ, а потребительских наборов; что он способен сопоставить полезности наборов товаров.

Ординалистская функция полезности исследована подробно, значительный вклад в ее изучение внес Дж. Хикс. После его трудов началось прогрессирующее вытеснение понятия «предельная полезность» категорией предельной нормы замещения (MRS – marginal rate of substitution).

Предположим, что происходит замещение товара y товаром х при движении сверху вниз вдоль кривой безразличия. Предельная норма замещения товара y товаром x показывает, какое количество товара x необходимо для того, чтобы компенсировать потребительскую утрату единицы товара y .

Они определяются так: .

Т.к. dy отрицательно, знак «-» вводится, чтобы MRS была больше нуля.

10 стр., 4623 слов

Вкр. Безносов. Оглавление Введение Глава Теоретические основы ...

... деятельности, не обладая теоретическими знаниями и практическими навыками в области организации труда персонала своего предприятия. Значение организации труда возрастает по мере развития рыночных отношений, способствующих возрождению конкуренции, при которой больший вес ...

Итак, предельная норма замещения геометрически есть касательная к кривой безразличия в данной точке. Значение предельной нормы замещения по абсолютной величине равно тангенсу угла наклона касательной к кривой безразличия.

Приведем еще один пример элементарного анализа на микроуровне, который имеет аналог и на макроуровне.

Любой индивид свой доход Y после уплаты налогов использует на потребление C и сбережение S . Ясно, что лица с низким доходом, как правило, целиком используют его на потребление, так что размер сбережения равен нулю. С ростом дохода субъект не только больше потребляет, но и больше сберегает. Как установлено теорией и подтверждено эмпирическими исследования, потребление и сбережение зависят от размера дохода:

Y= C(Y) + S(Y).

Зависимость потребления индивида от дохода называется функцией склонности к потреблению или функцией потребления.

Использование производной позволяет определить такую категорию, как предельную склонность к потреблению MPC (marginal property to consume), показывающую долю прироста личного потребления в приросте дохода: .

По мере увеличения доходов MPC уменьшается. Последовательно определяя сбережения при каждом значении дохода, можно построить функцию склонности к сбережению или функцию сбережения. Долю прироста сбережений в приросте дохода показывает предельная склонность к сбережению MPS(marginal propensity to save): .

С увеличением доходов MPS увеличивается.

Еще одним примером использования производной в экономике является анализ производственной функции. Поскольку ограниченность ресурсов принципиально не устранима, то решающее значение приобретает отдача от факторов производства. Здесь также применима производная, как инструмент исследования. Пусть применяемый капитал постоянен, а затраты труда увеличиваются. Можно ввести в экономический анализ следующую категорию — предельный продукт труда MPL (marginal product of labor) – это дополнительный продукт, полученный в результате дополнительных вложений труда (L – labor) при неизменной величине капитала:.

Если вложения осуществляются достаточно малыми порциями, то , т.к. dY — результат, dL — затраты, то MPL – предельная производительность труда.

Аналогично, MP k — предельный продукт капитала — дополнительный продукт, полученный в результате дополнительных вложений капитала K при неизменной величине труда:.

Если вложения осуществляются малыми порциями, то .

MP k — характеризует предельную производительность капитала.

эластичности функции

Эластичностью функции

Эластичность функции показывает приближенно, на сколько процентов изменится функция y= f(x), при изменении независимой переменной x на 1%.

Приведем несколько конкретных иллюстраций такой зависимости. Прямой коэффициент эластичности спроса по цене устанавливает, на сколько процентов увеличивается (уменьшается) спрос Q на товар i при уменьшении (увеличении) его цены P на 1%: .