Понятие об экономике как науке возникло в период расцвета греческой рабовладельческой демократии, когда были сделаны первые попытки не просто заметить, а теоретически осмыслить факты экономической жизни. Слово «экономия», от которого произошли такие понятия, как «экономика», «экономическая наука» и т. д., в переводе с греческого имеет смысл науки о ведении домашнего хозяйства. По своему основному содержанию она должна была заниматься вопросами рационального хозяйствования. Однако поскольку богатое греческое рабовладельческое хозяйство являлось сложной производственной системой, на которой отражались все процессы, происходившие в обществе, то эта наука неизбежно затрагивала и более общие проблемы. Из каких хозяйственных единиц должно состоять разумно построенное государство, в каком отношении эти единицы должны, обменивать производимые ими товары; какую роль играют торговля и деньги? Проблемы экономической науки в таком виде сформулировал великий греческий философ Аристотель, которого принято считать ее основателем. Аристотель первым пытался рассмотреть экономические закономерности, господствующие в обществе. А также выдвинул идею о различии между потребительной и меновой стоимостями товаров, а также высказал мысль о превращении денег в капитал и т. д.
Таким образом, еще в Древней Греции в экономической науке возникли два направления исследований: во-первых, это анализ методов рационального управления народным хозяйством и, во-вторых, изучение основных экономических закономерностей. В дальнейшем первое направление превратилось в науку о рациональном управлении деятельностью производительных единиц любого уровня – от производственного участка до экономики в целом. Второе направление дало начало экономической теории – науке, изучающей основные экономические закономерности сменяющих друг друга общественно- экономических формаций. Оба направления экономической науки развивались и развиваются в тесной связи между собой, их общность особенно заметна в исследованиях, направленных на изучение экономики страны как целого.
В системе экономических наук главенствующее положение занимает экономическая теория: она служит теоретической и методологической основой всего комплекса экономических наук. Применение математических методов в экономике началось именно в теоретико-экономических исследованиях
Вопросы. Микро. Суть теоремы Р. Коуза и её значение для экономической науки
... экономический смысл прав собственности. Для достижения поставленной цели необходимо решить следующие задачи: изучить сущность теоремы Коуза и её историю; лияние внешних эффектов в теореме Коуза; определить значение т Другими словами теорема Коуза - концепция, согласно которой проблемы ...
Представители буржуазной политической экономии уже с середины XIX века в своих теоретических исследованиях начинают использовать все более и более сложный математический аппарат. В последнее тридцатилетие XIX века складывается самостоятельное математическое направление в буржуазной политической экономии. Моделирование, как метод научного познания, стало применяться еще в глубокой древности и постепенно захватило все новые области научных познаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования XX век. Однако методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться важная роль моделирования как универсального метода научного познания.
2.Биография Л.В. Канторовича
«В целом меня мало интересовали проблемы, поставленные другими, и знаменитыми проблемами я специально не занимался… для моей деятельности характерным является постоянное взаимопроникновение теории и практики, относительно же практики, она нередко выходит за пределы математики».
Л.В. Канторович [1, с 173]
Леонид Витальевич Канторович
(19 января 1912 г. – 7 апреля 1986 г.)
Леонид Витальевич Канторович — действительный член Академии наук СССР, академик Американской академии наук и искусств, Венгерской, Чехословацкой, Югославской, Мексиканской академий наук; доктор Московского, Ленинградского, Новосибирского университетов, а также древнейших университетов мира: Йельского (США), Кембриджского и Глазго (Великобритания), Мюнхенского (Германия), Парижского, Гренобльского и Ниццы (Франция), Хельсинского (Финляндия), Калькуттского (Индия), высшей школы планирования и статистики в Варшаве; ученый, признанный во многих странах планеты, лауреат Нобелевской премии 1975 года.
Русский экономист Леонид Витальевич Канторович родился в 1912 г. в Санкт-Петербурге, Россия. Русская революция началась, когда ему было пять лет, во время гражданской войны его семья бежала на год в Белоруссию. В 1922 г. умер его отец, Виталий Канторович, оставив сына на воспитание матери, урожденной Паулины Сакс.
К. проявлял интерес к естественным наукам задолго до того, как он в 1926 г. в возрасте четырнадцати лет поступил в Ленинградский университет. Здесь он изучает не только естественные дисциплины, но и политэкономию, современную историю, математику. Его склонность к математике становится определяющей в работе по теории рядов, которую он представил на первом Всесоюзном математическом конгрессе в 1930 г. Закончив в том же году учебу, он остается в Ленинградском университете на преподавательской работе и продолжает свои исследования на кафедре математики. К 1934 г. он становится профессором, а годом позже, когда была восстановлена система академических степеней, получает докторскую степень.
В 30-е гг., в период интенсивного экономического и индустриального развития Советского Союза, К. был в авангарде математических исследований и стремился применить свои теоретические, разработки в практике растущей советской экономики. Такая возможность представилась в 1938 г., когда он был назначен консультантом в лабораторию фанерной фабрики. Перед ним была поставлена задача разработать такой метод распределения ресурсов, который мог бы максимизировать производительность оборудования, и К., сформулировав проблему с помощью математических терминов, произвел максимизацию линейной функции, подверженной большому количеству ограничителей. Не имея чистого экономического образования, он тем не менее знал, что максимизация при многочисленных ограничениях – это одна из основных экономических проблем и что метод, облегчающий планирование на фанерных фабриках, может быть использован во многих других производствах, будь то определение оптимального использования посевных площадей или наиболее эффективное распределение потоков транспорта.
Московский технический университет связи и информатики : Организация ...
... дисциплина изучает и разрабатывает прогрессивные методы организации производства и труда на предприятии. Наука об организации и планировании производства перерабатывающих предприятий является подлинной наукой, поскольку она опирается на познание и использование объективных экономических законов и открывает на основе ...
Метод К., разработанный для решения проблем, связанных с производством фанеры, и известный сегодня как метод линейного программирования, нашел широкое экономическое применение во всем мире. В работе «Математические методы организации и планирования производства», опубликованной в 1939 г., К. показал, что все экономические проблемы распределения могут рассматриваться как проблемы максимизации при многочисленных ограничителях, следовательно, могут быть решены с помощью линейного программирования.
В случае с производством фанеры он представил переменную, подлежащую максимизации, в виде суммы стоимостей продукции, выпускаемой всеми машинами. Ограничители были представлены уравнениями, которые устанавливали соотношение между количеством каждого из расходуемых факторов производства (например, древесины, электроэнергии, рабочего времени) и количеством продукции, выпускаемой каждой из машин, где величина любой из затрат не должна превышать имеющуюся в распоряжении сумму.
Затем К. ввел новые переменные (разрешающие мультипликаторы) как коэффициенты к каждому из факторов производства в ограничительных уравнениях и показал, что значения как переменной затрачиваемых факторов, так и переменной выпускаемой продукции могут быть легко определены, если известны значения мультипликаторов. Затем он представил экономическую интерпретацию этих мультипликаторов, показав, что они, в сущности, представляют собой предельные стоимости (или «скрытые цены») ограничивающих факторов; следовательно, они аналогичны повышенной цене каждого из факторов производства в режиме полностью конкурентного рынка.
И хотя с тех пор разрабатывались более совершенные компьютерные методики для определения значений мультипликаторов (К. использовал метод последовательного приближения) , его первоначальное понимание экономического и математического смысла мультипликаторов заложило основу для всех последующих работ в этой области в Советском Союзе. Впоследствии сходная методология была независимо разработана на Западе Тьяллингом Ч. Купмансом и другими экономистами.
Даже в тяжелые годы второй мировой войны, когда К. занимал должность профессора в Военно-морской инженерной академии в блокадном Ленинграде, он сумел создать значительное исследование «О перемещении масс» (1942).
В этой работе он использовал линейное программирование для планирования оптимального размещения потребительских и производственных факторов.
Продолжая работать в Ленинградском университете, К. одновременно возглавил отдел приближенных методов в Институте математики АН СССР в Ленинграде. он способствовал развитию новых математических методов планирования для советской экономики. В 1951 г. он (совместно с математиком, специалистом в области геометрии В.А. Залгаллером) опубликовал книгу, описывающую их работу по использованию линейного программирования для повышения эффективности транспортного строительства в Ленинграде. Через восемь лет он опубликовал самую, видимо, известную свою работу «Экономический расчет наилучшего использования ресурсов». В ней он сделал далеко идущие выводы по идеальной организации социалистической экономики для достижения высокой эффективности в использовании ресурсов. В особенности он рекомендовал шире использовать скрытые цены при распределении ресурсов по Союзу и даже применять процентную ставку для выражения скрытой цены времени при планировании капиталовложений.
Современные факторы стабилизации экономики России
... 1) Выявить факторы экономического роста в России. 2) Изучить эти факторы. II. Основная часть овременные факторы стабилизации экономики России До сих ... в результате продажи нефти и других сырьевых ресурсов на мировом рынке. Устойчивого экономического роста достигать ... СССР он был на уровне 20-30%. Это позволяет сделать вывод о том, что в современной рыночной экономике России доминирующим фактором ...
Хотя некоторые советские ученые с опаской относились к этим новым методам планирования, постепенно методы К. были приняты советской экономикой. В 1949 г. он был удостоен Сталинской премии за работу в области математики, в 1958 г. избран членом-корреспондентом Академии наук СССР. Шестью годами позже он стал академиком. В 1960 г., переехав в Новосибирск, где был расположен самый передовой в СССР компьютерный центр, он стал руководителем отдела экономико-математических методов в Сибирском отделении АН СССР. Вместе со своими коллегами, экономистами-математиками В.В. Новожиловым и В.С. Немчиновым, К. стал лауреатом Ленинской премии в 1965 г., а в 1967 г. был награжден орденом Ленина. В 1971 г. он становится руководителем лаборатории в Институте управления народным хозяйством в Москве.
Премия памяти Нобеля 1975 г. по экономике была присуждена совместно К. и Тьяллингу Ч. Купмансу «за вклад в теорию оптимального распределения ресурсов». В своей речи на церемонии презентации представитель Шведской королевской академии наук Рагнар Бентцель отмечал очевидность того, о чем свидетельствовали работы двух лауреатов, – «основные экономические проблемы могут изучаться в чисто научном плане, независимо от политической организации общества, в котором они исследуются». Работы Купманса и К. по линейному программированию тесно соприкасались, а американский ученый подготовил в 1939 г. первую публикацию книги советского ученого на английском языке. В своей Нобелевской лекции «Математика в экономике: достижения, трудности, перспективы» К. говорил о «проблемах и опыте плановой экономики, особенно советской экономики».
В следующем году К. стал директором Института системных исследований АН СССР. Проводя собственные исследования, он в то же время поддерживал и обучил целое поколение советских экономистов.
В 1938 г. К. женился на Наталье Ильиной, враче по профессии. Их дети – сын и дочь – стали экономистами. К. скончался 7 апреля 1986 г. в возрасте 74 лет.
3. Леонид Витальевич Канторович: линейное программирование
Премия памяти Нобеля по экономике 1975 г.
(совместно с Тьяллингом Купмансоном).
Линейное программирование изучают десятки тысяч людей во всем мире. Под этим термином скрывается колоссальный раздел науки, посвященный линейным оптимизационным моделям. Иначе говоря, линейное программирование — это наука о теоретическом и численном анализе и решении задач, в которых требуется найти оптимальное значение, т. е. максимум или минимум, некоторой системы показателей в процессе, поведение и состояние которого описывается той или иной системой линейных неравенств.
Линейное программирование
... линейное программирование. Линейное программирование (далее ЛП) — задачи, в которых критерий оптимальности задается в виде линейной формы от входящих в него переменных, на эти переменные накладываются ограничения в виде линейных уравнений или линейных ... и симплекс-метод. Математическое решение задачи В общем виде задачу линейного программирования можно представить следующим образом: Алгоритмы ...