Современные эконометрические методы

Реферат
Содержание скрыть

Реферат

Современные эконометрические методы, О развитии эконометрических методов

Текущее состояние эконометрики, как и в других областях, определяется прошлым. Давайте кратко рассмотрим историю эконометрики и прикладной статистики, начиная с их практического использования.

Что дает прикладная статистика народному хозяйству?

Поэтому бесспорно, что методы эконометрики и прикладной статистики успешно применяются в различных отраслях народного хозяйства, практически во всех областях науки. Согласно докладу [2], в 1988 г. затраты в СССР на статистический анализ данных оценивались в 2 миллиарда рублей ежегодно.

Большая практическая значимость эконометрики и прикладной статистики, особенно в экономике, менеджменте, технических исследованиях и разработках, оправдывает целесообразность развития их методологии, в которых эти области научной и прикладной деятельности рассматривалась бы как целое, «с высоты птичьего полета». Чтобы обсудить тенденции развития эконометрики и статистических методов в 21 веке, необходимо хотя бы кратко рассмотреть их историю.

Об истории эконометрики и прикладной статистики.

Сразу после возникновения теории вероятностей (Паскаль, Ферма, 17 век) вероятностные модели стали использоваться при обработке статистических данных. Например, изучалась частота рождения мальчиков и девочек, было установлено отличие вероятности рождения мальчика от 0.5, анализировались причины того, что в парижских приютах эта вероятность не та, что в самом Париже, и т.д. Имеется достаточно много публикаций по истории теории вероятностей, однако в некоторых из них имеются неточные утверждения, что заставило одного из крупнейших ученых ХХ в. академика Украинской АН Б.В. Гнеденко включить в очередное издание своего курса [4] главу по истории математики случайного.

В 1794 г. (по другим данным — в 1795 г.) К. Гаусс разработал метод наименьших квадратов, один из наиболее популярных ныне статистических методов (см. главу 5 выше), и применил его при расчете орбиты астероида Церера — для борьбы с ошибками астрономических наблюдений. В Х1Х веке заметный вклад в развитие практической статистики внес бельгиец А. Кетле на основе анализа большого количества реальных данных показал стабильность связанных статистических показателей, таких как доля самоубийств среди всех смертей. Интересно, что основные идеи статистического приемочного контроля и сертификации продукции обсуждались академиком М.В. Остроградским и применялись в российской армии ещё в середине Х1Х в.. Статистические методы управления качеством, сертификации и классификации продукции и сейчас весьма актуальны (см. главу 13 выше).

15 стр., 7480 слов

Структура эконометрики

... прикладной статистики) с учетом специфики экономических данных; б) разработка и исследование эконометрических моделей в соответствии с конкретными потребностями экономической науки и практики; в) применение эконометрических методов и моделей для статистического анализа ...

Современный этап развития прикладной статистики можно отсчитывать с 1900 г., когда англичанин К. Пирсон основан журнал «Biometrika». Первая треть ХХ в. прошла под знаком параметрической статистики. Изучались методы, основанные на анализе данных из параметрических семейств распределений, описываемых кривыми из т.н. семейства Пирсона. Наиболее популярным было нормальное (гауссово) распределение. Для проверки гипотез использовались тесты Пирсона, Стьюдента, Фишера. Предложены метод максимального правдоподобия, дисперсионный анализ и сформулированы основные идеи для планирования эксперимента.

Разработанную в первой трети ХХ в. теорию называем параметрической статистикой, поскольку ее основной объект изучения — это выборки из распределений, описываемых одним или небольшим числом параметров. Наиболее распространено семейство кривых Пирсона, определяемое четырьмя параметрами. Как правило, нельзя указать каких-либо веских причин, по которым конкретное распределение результатов наблюдений должно входить в то или иное параметрическое семейство (подробнее см. начало главы 4).

Исключения хорошо известны: если вероятностная модель предусматривает суммирование независимых случайных величин, то сумму естественно описывать нормальным распределением; если же в модели рассматривается произведение таких величин, то итог, видимо, приближается логарифмически нормальным распределением, и т.д. Однако в подавляющем большинстве реальных ситуаций таких моделей не существует, и аппроксимация реального распределения с использованием кривых семейства Пирсона или его подсемейств является чисто формальной операцией.

Именно из таких соображений критиковал параметрическую статистику академик АН СССР С.Н. Бернштейн в 1927 г. в своем докладе на Всероссийском съезде математиков [5].

Однако эта теория, к сожалению, все еще остается основой для обучения статистическим методам и продолжает использоваться большинством прикладных людей, которые остаются в стороне от новых тенденций в статистике. Почему это происходит? Чтобы попытаться ответить на этот вопрос, обратимся к одной из статистических наук — наукометрии, в которой развитие научных исследований анализируется статистическими методами.

Наукометрия прикладной статистики.

Традиционное заблуждение состоит в том, что каждое новое достижение, которого достигает исследователь, — это кирпич, помещенный в постоянно растущее научное здание, которое, несомненно, будет проанализировано и использовано научным сообществом. Реальная ситуация — совсем иная. Как известно, большинство книг в центральных библиотеках никогда не читались. Так что, скорее всего, новый результат будут знать единицы, да еще поверхностно, а в лучшем случае сам автор и его ученики будут использовать его в будущих работах.

В период обучения закладываются основы профессиональных знаний экономиста, менеджера, исследователя и инженера. Затем их восстанавливают в том узком направлении, в котором работает специалист. Следующий этап — их тиражирование новому поколению. В результате вузовские учебники отстоят от современного развития на десятки лет. Так, учебники по математической статистике, по нашей экспертной оценке, в основном соответствуют 40-60-м годам ХХ в. Вот почему большинство недавно опубликованных исследований, а тем более прикладных, по научному и методическому уровню соответствуют одним и тем же годам. Одновременно приходится признать, что результаты, которым не повезло, поскольку они не вошли в учебники, независимо от их научной и (или) прикладной ценности почти все забываются.

9 стр., 4259 слов

Статистические методы

... законченное статистическое исследование проходит в 3 этапа, между которыми, разумеется, могут быть перерывы во времени. Статистические методы - методы анализа статистических данных. Выделяют методы прикладной статистики, которые ... поскольку её основной объект изучения - это выборки из распределений, описываемых одним или небольшим числом параметров. Наиболее общим является семейство кривых Пирсона, ...

Активно продолжается развитие тупиковых направлений. Психологически это понятно. Приведу пример из своего опыта. В свое время по заказу Госстандарта я разработал методы оценки параметров гамма-распределения (см. государственный стандарт [12].

Поэтому мне близки и интересны работы по оцениванию параметров по выборкам из распределений, принадлежащих тем или иным параметрическим семействам, понятия функции максимального правдоподобия, эффективности оценок, использование неравенства Рао-Крамера и т.д. К сожалению, я знаю, что это тупиковая ветвь, поскольку реальные данные не подчиняются никакому параметрическому семейству, необходимо применять другие статистические методы, которые будут рассмотрены ниже. ясно, что параметрическим статистикам, которые много лет совершенствовались в своей области, психологически трудно согласиться с таким утверждением. В том числе мне было сложно перейти на другую позицию, отраженную в этой книге и основанную на потребностях прикладной работы.

Точки роста

Национальная литература по эконометрике и прикладной статистике столь же обширна, как и мировая литература. Только в разделе «Математические методы исследования» журнала «Заводская лаборатория» с 1960-х годов опубликовано более 1000 статей. Мы также не будем пытаться перечислять соответствующие исследовательские группы или монографии в этой области. Отметим только одно издание. По нашему мнению, наилучшей отечественной книгой по прикладной статистике является сборник статистических таблиц Л.Н. Большева и Н.В.Смирнова [13] с подробными комментариями, играющими роль сжатого учебника и справочника.

Основная цель настоящей главы — выделить и обсудить «точки роста» эконометрики и прикладной статистики, те их направления, которые представляются перспективными в будущем, в XXI веке, но пока в большинстве учебных изданий отодвинуты на задний план традиционными постановками.

При описании современного этапа развития эконометрических и статистических методов целесообразно выделить пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять «точек роста»: непараметрика (т.е. непараметрическая статистика), робастность, бутстреп, статистика интервальных данных, статистика нечисловых данных (в несколько иной терминологии — статистика объектов нечисловой природы).

Обсудим их.

Непараметрическая статистика

Следует отметить, что словосочетание «критерий Колмогорова-Смирнова», которое иногда встречается в литературе, неверно, поскольку эти две статистики никогда не печатались вместе и не изучались один и тот же критерий аналогичными методами. Правильно сочетание «критерий типа Колмогорова-Смирнова», используемое для обозначения критериев, основанных на использовании высших функций эмпирическим процессом.

После Второй мировой войны развитие непараметрической статистики шло быстрыми темпами. Большую роль сыграли работы Ф. Вилкоксона и его школы. К настоящему времени с помощью непараметрических методов можно решать практически тот же круг статистических задач, что и с помощью параметрических. Однако для обеспечения широкого внедрения непараметрических методов необходимо провести еще целый комплекс теоретических и пилотных (т.е. пробных) прикладных работ. Все большую роль играют непараметрические оценки плотности, непараметрические методы регрессии и распознавания образов (дискриминантного анализа).

12 стр., 5532 слов

Статистика уровня расходов населения Российской Федерации

... методов дифференциации, коэффициента Джини, аналитического выравнивания, корреляционного анализа. Курсовая работа состоит из введения, трех глав, выводов и предложений, списка использованных источников. 1. СИСТЕМА ПОКАЗАТЕЛЕЙ УРОВНЯ ЖИЗНИ Уровень жизни населения ... уровня жизни. Учитывая, что в экономической литературе не существует однозначного определения категории «уровень жизни населения», ...

В нашей стране непараметрические методы получили достаточно большую известность после выхода в 1965 г. первого издания упомянутого выше сборника статистических таблиц Л.Н. Большева и Н.В.Смирнова [13], содержащего подробные таблицы для основных непараметрических критериев.

Однако параметрические методы даже более популярны, чем непараметрические методы, особенно среди тех, которые применяются теми, кто не знаком со статистическими методами. Неоднократно публиковались (см. начало гл.4) экспериментальные данные, свидетельствующие о том, что распределения реально наблюдаемых случайных величин, в частности, ошибок измерения, в подавляющем большинстве случаев отличны от нормальных (гауссовских).

Однако теоретики продолжают строить и изучать статистические модели, основанные на гауссовости, а практики продолжают применять аналогичные методы и модели. Другими словами, «ищут под фонарем, а не там, где потеряли».

Устойчивость статистических процедур (робастность)

Существует множество моделей устойчивости, в зависимости от того, какие отклонения от заданного параметрического семейства допустимы. Наиболее популярной среди теоретиков является модель выбросов, в которой исходная выборка «разрушается» небольшим количеством «выбросов» с принципиально другим распределением. Однако эта модель представляется «тупиковой», поскольку в большинстве случаев большие выбросы либо невозможны из-за ограниченности шкалы прибора либо интервала изменения измеряемой величины, либо от них можно избавиться, применяя лишь статистики, построенные по центральной части вариационного ряда. Кроме того, в таких моделях частота засорения обычно считается известной, что в сочетании с вышеизложенным делает их непригодными для практического использования.

Более перспективными являются, например, модель малых отклонений распределений, в которой расстояние между распределением каждого элемента выборки и базовым распределением не превышает заданное небольшое значение, и статистическая модель интервальных данных.

Бутстреп (размножение выборок)

Термин «бутстреп» мгновенно получил широкую известность после первой же статьи Б.Эфрона 1979 г. по этой тематике. Это сразу стало обсуждаться в массе публикаций, в том числе научно-популярных. В «Заводской лаборатории» № 10 за 1987 г. была помещена подборка статей по бутстрепу. На русском языке выпущен сборник статей Б. Эфрона [16].

Основная идея бутстрепа по Б. Эфрону состоит в том, что методом Монте-Карло (статистических испытаний) многократно извлекаются выборки из эмпирического распределения. Эти выборки, естественно, являются вариантами исходной, напоминают ее.

Сама по себе идея «размножения выборок» была известна гораздо раньше. Одна из статей Б. Эфрона в сборнике [16] называется так: «Бутстреп-методы: новый взгляд на метод складного ножа». Упомянутый «метод складного ножа» (jackknife) предложен М. Кенуем еще в 1949 г., за 30 лет до появления статьи Б.Эфрона. «Размножение выборок» при этом осуществляется путем исключения одного наблюдения. Таким образом для выборки объема n получаем n «похожих» на нее выборок объема (n — 1) каждая. Если же исключать по 2 наблюдения, то число «похожих» выборок возрастает до n (n — 1) / 2 объема (n — 2) каждая.

22 стр., 10902 слов

Развитие Российской Государственной статистики

... адаптации к рыночной экономике. В настоящей работе в краткой форме дано представление об основных вехах, событиях и направлениях работы государственной статистики в России, наиболее видных ... экономического и социального развития России. Настоятельная потребность в накоплении учетно-статистических данных, в их изучении и осмыслении, в совершенствовании самих методов организации и проведения ...

Преимущества и недостатки бутстрапа как статистического метода обсуждались в главе 11 выше. Там же приводится информация о ряде аналогичных методов. Необходимо подчеркнуть, что бутстреп по Эфрону — лишь один из вариантов методов «размножения выборки» (resampling), и, на наш взгляд, не самый удачный. Метод «складного ножа» представляется более полезным. Исходя из этого, можно сформулировать следующую простую практическую рекомендацию.

Предположим, мы сделаем какие-то статистические выводы из выборки. Вы хотите узнать также, насколько эти выводы устойчивы. Если у Вас есть другие (контрольные) выборки, описывающие то же явление, то Вы можете применить к ним ту же статистическую процедуру и сравнить результаты. А если таких выборок нет? Тогда Вы можете их построить искусственно. Берете исходную выборку и исключаете один элемент. Получаете похожую выборку (она взята из того же распределения, только объем на единицу меньше).

Затем возвращаете этот элемент выборки и исключаете другой. Получаете вторую похожую выборку. Сделав это со всеми элементами исходного семпла, вы получите столько семплов, похожих на оригинал, каков его размер. Остается обработать их тем же способом, что и исходную, и изучить устойчивость получаемых выводов — разброс оценок параметров, частоты принятия или отклонения гипотез и т.д.

Можно изменять не выборку, а сами данные. Поскольку всегда имеются погрешности измерения, то реальные данные — это не числа, а интервалы (результат измерения плюс-минус погрешность).

Нужна статистическая теория анализа таких данных.

Статистика интервальных данных

Статистика интервальных данных концептуально связана с интервальной математикой, где интервалы действуют как числа. Это направление математики является дальнейшим развитием всех известных правил приближенного вычисления, посвященным выражению ошибок суммы, разности, произведения, частного через ошибки тех чисел, над которыми выполняются перечисленные операции. К настоящему времени удалось решить, в частности, ряд задач теории интервальных дифференциальных уравнений, в которых коэффициенты, начальные условия и решения описываются с помощью интервалов.

Одной из ведущих научных школ в области статистики интервальных данных является школа проф. А.П. Вощинина, активно работающая с конца 70-х годов. В частности, изучаются проблемы регрессионного анализа, планирования экспериментов, сравнения альтернатив и принятия решений в условиях неопределенности интервала.

Рассмотрим еще одно направление в динамической статистике данных, которое также выглядит многообещающим. Разработайте асимптотические методы статистического анализа интервальных данных для больших выборок и небольших ошибок измерения. В отличие от классической математической статистики, размер выборки сначала стремится к бесконечности, и только потом ошибки уменьшаются до нуля. В частности, с помощью такой асимптотики были сформулированы правила выбора метода оценивания параметров гамма-распределения в ГОСТ 11.011-83 [12].

10 стр., 4925 слов

Бизнес-план ООО «Горная лаванда сервис».Характер объекта бизнеса. ...

... организации и страение его развития; 2) дать характер объекта бизнеса. Анализ рынка сбыта; 3) определить строение маркетинга; 4) ... млн.руб. в течение проекта таблица 1.1. (Таблица 1.1- Данные по проекту). В качестве источников финансирования проекта определены: ... представлена таблица сводных показателей по проекту. Таблица 1.1- Данные по проекту Наименование Итог Норма Вывод Чистый дисконтированный ...

В рамках рассматриваемого научного направления, разработана общая схема исследования, включающая расчет нотны (максимально возможного отклонения статистики, вызванного интервальностью исходных данных) и рационального объема выборки (превышение которого не дает существенного повышения точности оценивания).

Она применена к оцениванию математического ожидания, дисперсии, коэффициента вариации, параметров гамма-распределения и характеристик аддитивных статистик, при проверке гипотез о параметрах нормального распределения, в т.ч. с помощью критерия Стьюдента, а также гипотезы однородности с помощью критерия Смирнова. Подходы к рассмотрению интервальных данных были разработаны в основных формулировках регрессионного, дискриминантного и кластерного анализа. В частности, изучено влияние погрешностей измерений и наблюдений на свойства алгоритмов регрессионного анализа, разработаны способы расчета нотн и рациональных объемов выборок, введены и исследованы новые понятия многомерных и асимптотических нотн, доказаны соответствующие предельные теоремы. Началась разработка дискриминантного анализа диапазона, в частности, рассматривается влияние диапазона данных на показатель качества классификации, представленной в главе 5. Изучено асимптотическое поведение оценок метода моментов и оценок максимального правдоподобия (а также более общих — оценок минимального контраста), проведено асимптотическое сравнение этих методов в случае интервальных данных. Существуют общие условия, при которых, в отличие от классической математической статистики, метод моментов дает более точные оценки, чем метод максимального правдоподобия.

В области асимптотической математической статистики интервальных данных российская наука имеет мировой приоритет. Расширение работ по рассматриваемой теме позволит закрепить этот приоритет, получить фундаментальные теоретические результаты в новой области математической статистики и необходимые для корректного статистического анализа практически всех типов данных. Со временем алгоритмы интервальной статистики, «параллельные» алгоритмам, обычно используемым в прикладной математической статистике, должны быть включены во все типы статистического программного обеспечения. Это позволит в явном виде учесть наличие ошибок в результатах наблюдений, приблизить позиции метрологов и статистиков.

Статистика нечисловых объектов в составе прикладной статистики.

статистика (числовых) случайных величин (см. главу 4),

многомерный статистический анализ (см. главу 5),

статистика временных рядов и случайных процессов (см. главу 6),

статистика объектов нечисловой природы (см. главу 8),.

Первые три из этих областей являются классическими. Они были хорошо известны еще в первой половине ХХ в. Остановимся на четвертом, который относительно недавно вошел в массовое сознание специалистов. Его также называют нечисловой статистикой или просто нечисловой статистикой. Анализ динамики развития эконометрики и прикладной статистики приводит к выводу, что в XXI в. она станет центральной областью прикладной статистики, поскольку содержит наиболее общие подходы и результаты.

3 стр., 1179 слов

Основы математического моделирования социально-экономических процессов

... 1. Экономико-математическое моделирование Моделирование - процесс познания с использованием моделей, т.е. таких объектов, которые заменяют оригинал и служат источником информации о нем. Одним из видов моделирования является математическое моделирование. Математическое моделирование экономических явлений ...

Исходный объект в прикладной математической статистике — это выборка. В вероятностной теории статистики выборка — это набор равномерно распределенных независимых случайных элементов. Какова природа этих элементов? В классической математической статистике выборками являются числа. В многомерном статистическом анализе — вектора. А в нечисловой статистике элементы выборки — это объекты нечисловой природы, которые нельзя складывать и умножать на числа. Другими словами, объекты нечисловой природы находятся в пространствах, не имеющих векторной структуры.

Примерами объектов нечисловой природы являются (подробнее см. главу 8):

  • значения качественных признаков, т.е. результаты кодировки объектов с помощью заданного перечня категорий (градаций);
  • упорядочения (ранжировки) экспертами образцов продукции (при оценке её технического уровня и конкурентоспособности)) или заявок на проведение научных работ (при проведении конкурсов на выделение грантов);
  • классификации, т.е. разбиения объектов на группы сходных между собой (кластеры);
  • толерантности, т.е.

бинарные отношения, описывающие сходство объектов между собой, например, сходства тематики научных работ, оцениваемого экспертами с целью рационального формирования экспертных советов внутри определенной области науки;

  • результаты парных сравнений или контроля качества продукции по альтернативному признаку («годен» — «брак»), т.е. последовательности из 0 и 1;
  • множества (обычные или нечеткие), например, зоны, пораженные коррозией, или перечни возможных причин аварии, составленные экспертами независимо друг от друга;
  • слова, предложения, тексты;
  • вектора, координаты которых — совокупность значений разнотипных признаков, например, результат составления статистического отчета о научно-технической деятельности (т.н.

форма № 1-наука) или заполненная компьютеризированная история болезни, в которой часть признаков носит качественный характер, а часть — количественный;

  • ответы на вопросы экспертной, маркетинговой или социологической анкеты, часть из которых носит количественный характер (возможно, интервальный), часть сводится к выбору одной из нескольких подсказок, а часть представляет собой тексты;
  • и т.д.

Интервальные данные (см. выше) тоже можно рассматривать как пример объектов нечисловой природы, а именно, как частный случай нечетких множеств.

С начала 1970-х годов под влиянием требований прикладных исследований в социально-экономических, технических и медицинских науках в России активно развивалась статистика объектов нечислового характера, также известная как статистика нечисловых или нечисловых данных нечисловая статистика. При создании этой относительно новой области эконометрики и прикладной математической статистики приоритет отдается российским ученым.

Большую роль сыграл основанный в 1973 г. научный семинар «Экспертные оценки и анализ данных». В 60-е годы советское научное сообщество стало интересоваться методами экспертных оценок (об их истории и современном состоянии см. главу 12).

9 стр., 4129 слов

Экономико-математические модели

... исследования в области экономики. Бурное развитие математического анализа, исследования операций, теории вероятностей и математической статистики способствовало формированию различного рода моделей экономики. Целью математического моделирования экономических систем является использование методов математики для наиболее ...

В результате началось знакомство с конкретными математизированными теориями, связанными с этими методами. Речь идет о репрезентативной теории измерений, ставшей известной в нашей стране по статье П.Суппеса и Дж.Зинеса в сборнике [17] и книге И.Пфанцагля [18], о теории нечеткости, современный этап которой начался с работ Л.А.Заде [19], теории парных сравнений, описанной в монографии Г.Дэвида [20].

К этому кругу идей примыкают теория случайных множеств (см., например, книгу Ж.Матерона [21]) и методы многомерного шкалирования (описаны, в частности, в монографиях А.Ю.Терехиной [22] и В.Т.Перекреста [23]).

Но наибольшее влияние оказали идеи Дж.Кемени, который аксиоматически ввел расстояние между ранжировками (теперь оно именуется в литературе расстоянием Кемени) и предложил использовать в качестве средней величины решение оптимизационной задачи (теперь — медиана Кемени).

Его скромная книжка [24], написанная в соавторстве с Дж.Снеллом, породила большой поток исследований.

В течение 70-х годов на основе запросов теории экспертных оценок (а также социологии, экономики, техники и медицины) развивались конкретные направления статистики объектов нечисловой природы. Были установлены связи между конкретными видами таких объектов, разработаны для них вероятностные модели (см. главу 8).

Научные итоги этого периода подведены в монографиях [14,25,26]).

Следующим этапом является выделение статистики объектов нечисловой природы как самостоятельного направления в эконометрике и прикладной статистике, ядром которой являются методы статистического анализа данных произвольного характера. Программа развития этого нового научного направления впервые была сформулирована в статье [27].

Реализация этой программы была осуществлена в 80-е годы. Работа этого периода характеризуется сосредоточением внимания на внутренних проблемах нечисловой статистики. Ссылки на конкретные монографии, сборники, статьи и иные публикации нескольких десятков авторов приведены в главе 8. Отметим лишь сборник научных статей [28], полностью посвященный нечисловой статистике.

В 1990-е годы статистика объектов нечисловой природы с теоретической точки зрения была достаточно хорошо развита, основные идеи, подходы и методы были развиты и изучены математически, в частности, были доказаны многие теоремы. Однако она оставалась недостаточно апробированной на практике. Это было связано как с ее сравнительной молодостью, так и с хорошо известными характеристиками организации науки в 1980-е годы, когда у теоретиков не было достаточных стимулов для широкого внедрения своих результатов. А в 90-е годы из математических и статистических исследований пришло время перейти к практическому применению полученных результатов.

Следует отметить, что в статистике объектов нечисловой природы, как и в других областях эконометрики, прикладной математической статистики и прикладной математики вообще, одна и та же математическая схема может с успехом применяться и в технических исследованиях, и в менеджменте, и в экономике, и в геологии, и в медицине, и в социологии, и для анализа экспертных оценок, и во многих иных областях, а потому ее лучше всего формулировать и изучать в наиболее общем виде, для объектов произвольной природы.

Основные идеи статистики объектов нечисловой природы.

Кратко рассмотрим некоторые идеи, развиваемые в статистике объектов нечисловой природы для данных, лежащих в пространствах произвольной формы. Решаются классические задачи описания данных, оценивания, проверки гипотез — но для неклассических данных, а потому неклассическими методами.

7 стр., 3365 слов

Особенности математического моделирования в экономике

... математических методов в экономике; решение прикладной задачи с помощью выбранного экономико-математического метода. 1.1 Основные понятия математического моделирования ... на базе теории вероятностей и математической статистики; невозможность изолировать протекающие в экономических системах ... в виду, что далеко не во всех случаях данные, полученные в результате экономико-математического моделирования, ...

Первой обсудим проблему определения средних величин. В рамках репрезентативной теории измерений удается указать вид средних величин, соответствующих тем или иным шкалам измерения (см. главу 3).

В классической математической статистике средние величины вводят с помощью операций сложения (выборочное среднее арифметическое, математическое ожидание) или упорядочения (выборочная и теоретическая медианы).

В пространствах произвольной природы средние значения нельзя определить с помощью операций сложения или упорядочения. Теоретические и эмпирические средние приходится вводить как решения экстремальных задач. Для теоретического среднего это — задача минимизации математического ожидания (в классическом смысле) расстояния от случайного элемента со значениями в рассматриваемом пространстве до фиксированной точки этого пространства (минимизируется указанная функция от этой точки).

Для эмпирического среднего математическое ожидание берется по эмпирическому распределению, т.е. берется сумма расстояний от некоторой точки до элементов выборки и затем минимизируется по этой точке. При этом как эмпирическое, так и теоретическое средние как решения экстремальных задач могут быть не единственным элементом пространства, а состоять из множества таких элементов, которое может оказаться и пустым. Тем не менее удалось сформулировать и доказать законы больших чисел для средних величин, определенных указанным образом, т.е. установить сходимость эмпирических средних к теоретическим .

Оказалось, что методы доказательства законов больших чисел допускают существенно более широкую область применения, чем та, для которой они были разработаны. А именно, удалось изучить асимптотику решений экстремальных статистических задач, к которым, как известно, сводится большинство постановок прикладной статистики. В частности, кроме законов больших чисел установлена и состоятельность оценок минимального контраста, в том числе оценок максимального правдоподобия и робастных оценок. К настоящему времени подобные оценки изучены также и в интервальной статистике.

В статистике в пространствах произвольной природы большую роль играют непараметрические оценки плотности, используемые, в частности, в различных алгоритмах регрессионного, дискриминантного, кластерного анализов. В нечисловой статистике предложен и изучен ряд типов непараметрических оценок плотности в пространствах произвольной природы, в частности, доказана их состоятельность, изучена скорость сходимости и установлен примечательный факт совпадения наилучшей скорости сходимости в произвольном случае с той, которая имеет быть в классической теории для числовых случайных величин.

Дискриминантный, кластерный, регрессионный анализы в пространствах произвольной природы основаны либо на параметрической теории — и тогда применяется подход, связанный с асимптотикой решения экстремальных статистических задач — либо на непараметрической теории — и тогда используются алгоритмы на основе непараметрических оценок плотности.

Для проверки гипотез могут быть использованы статистики интегрального типа, в частности, типа омега-квадрат. Любопытно, что предельная теория таких статистик, построенная первоначально в классической постановке [29], приобрела естественный (завершенный, изящный) вид именно для пространств произвольного вида [30], поскольку при этом удалось провести рассуждения, опираясь на базовые математические соотношения, а не на те частные (с общей точки зрения), что были связаны с конечномерным пространством.

Представляют практический интерес результаты, связанные с конкретными областями статистики объектов нечисловой природы, в частности, со статистикой нечетких множеств, развитой в книге [31], и со статистикой случайных множеств [14] (следует отметить, что теория нечетких множеств в определенном смысле сводится к теории случайных множеств [14,31]), с непараметрической теорией парных сравнений, с аксиоматическим введением метрик в конкретных пространствах объектов нечисловой природы [28], и с рядом других конкретных постановок (см. главу 8).

Для анализа нечисловых, в частности, экспертных данных весьма важны методы классификации. С другой стороны, наиболее естественно ставить и решать задачи классификации, основанные на использовании расстояний или показателей различия, в рамках статистики объектов нечисловой природы. Это касается как распознавания образов с учителем (другими словами, дискриминантного анализа), так и распознавания образов без учителя (т.е. кластерного анализа).

Современное состояние дискриминантного и кластерного анализа с точки зрения статистики объектов нечисловой природы отражено в главе 5.

Статистические методы анализа нечисловых данных особенно хорошо приспособлены для применения в экономике, социологии и экспертных оценках, поскольку в этих областях от 50% до 90% данных являются нечисловыми.

Другие точки роста.

В течение последних более чем 60 лет в России наблюдается огромный разрыв между государственной статистикой и научным сообществом специалистов по статистическим методам (подробнее об этом см. статью [7]).

В учебнике по истории статистики [32] даже не упоминаются имена членов-корреспондентов АН СССР Н.В.Смирнова и Л.Н. Большева! А ведь они – единственные представители именно математической статистики как таковой в Академии наук в ХХ в. (еще ряд членов Академии наук имели математическую статистику среди своих интересов, но Н.В. Смирнов и Л.Н. Большев занимались практически только ею).

Поэтому нет ничего удивительного в том, что тенденции развития современной эконометрики и прикладной математической статистики столь же мало обсуждаются отечественными авторами, как и ее история.

О некоторых нерешенных вопросах эконометрики и прикладной статистики

За последние 30 лет выявился целый ряд нерешенных вопросов эконометрики и прикладной статистики , как чисто научных, так и научно-организационных. Обсудим пять из них:

  • влияние отклонений от традиционных предпосылок (вероятностно-статистических моделей) на свойства эконометрических и статистических процедур;
  • оправданность использования асимптотических теоретических результатов эконометрики и прикладной математической статистики при конечных объемах выборок;
  • формулировки и обоснования правил выбора одного из многих критериев для проверки конкретной гипотезы;
  • конкретные способы организации теоретических работ в области эконометрики и прикладной математической статистики;
  • организация и проведение прикладных работ с использованием методов эконометрики и прикладной математической статистики.

Настоящий раздел отнюдь не претендует на решение перечисленных вопросов. Его цель гораздо скромнее — обратить внимание на существование ряда нерешенных вопросов в надежде, что коллективными усилиями удастся продвинуться в их решении.

Влияние отклонений от традиционных предпосылок.

На основе сформулированных классических предпосылок построено огромное здание классической математической статистики с большим числом теорем. Оно за последние 100 лет обросло горой учебников и программных продуктов.

Однако при внимательном взгляде совершенно ясна нереалистичность классических предпосылок. Независимость результатов измерений обычно принимается «из общих предположений», между тем во многих случаях очевидна их коррелированность [33].

Одинаковая распределенность также вызывает сомнения из-за изменения во времени свойств измеряемых образцов, средств измерения и психофизического состояния специалистов, проводящих измерения (наблюдения, испытания, анализы, опыты).

Даже обоснованность самой возможности применения вероятностных моделей также часто вызывает сомнения, например, при моделировании уникальных измерений (теорию вероятностей обычно привлекают при изучении массовых явлений).

И уж совсем редко распределения результатов измерений можно считать нормальными (см. главу 4).

Итак, методы классической математической статистики обычно используют вне сферы их обоснованной применимости. Каково влияние отклонений от традиционных предпосылок на статистические выводы? В настоящее время об этом имеются лишь отрывочные сведения. Приведем три примера.

Пример 1., Пример 2., Пример 3.

Примеры 1-3 показывают весь спектр возможных свойств классических расчетных методов в случае отклонения от нормальности. Методы примера 1 оказываются вполне пригодными при таких отклонениях, примера 2 — пригодными в некоторых случаях, примера 3 — полностью непригодными.

Итак, имеется необходимость изучения свойств расчетных методов классической математической статистики, опирающихся на предположение нормальности, в ситуациях, когда это предположение не выполнено. Аппаратом для такого изучения наряду с методом Монте-Карло (статистических испытаний) могут послужить предельные теоремы теории вероятностей (и опирающиеся на них асимптотические методы математической статистики), прежде всего ЦПТ, поскольку интересующие нас расчетные методы обычно используют разнообразные суммы.

Пока подобное изучение не проведено, остается неясной научная ценность, например, применения факторного анализа к векторам из переменных, принимающих небольшое число градаций и к тому же измеренных в порядковой шкале. Этот пример показывает важность еще одного направления исследований — изучения свойств алгоритмов, предназначенных для анализа числовых данных, в случаях, когда данные измерены в шкалах, отличных от абсолютной, в частности, в порядковой шкале. Подробнее это направление рассмотрено в главе 3.

Из большого числа возможных постановок, относящихся к изучению влияния отклонений от традиционных предпосылок, укажем лишь на то, что реальные данные имеют небольшое число значащих цифр (обычно от 2 до 5), в то время как в классической математической статистике используются непрерывные случайные величины, для которых вероятность получения подобного результата наблюдения равна 0. Действительно, вероятность того, что хотя бы один элемент выборки из распределения с непрерывной функцией распределение попадет в заданное счетное множество, в частности, в множество рациональных чисел, равна 0 (согласно классическим свойствам вероятностной меры).

Событиями, имеющими вероятность 0, принято пренебрегать. Следовательно, с точки зрения классической математической статистики любыми реальными данными нужно пренебречь! Выходов из этого парадокса несколько. Один из них — бурно развивающаяся в настоящее время статистика интервальных данных (см. главу 9), другой — использование классических поправок Шеппарда для сгруппированных данных [34,35]. Здесь еще много работы. Так, даже для такого широко используемого статистического показателя, как коэффициент корреляции, поправки на группировку (поправки Шеппарда) были получены сравнительно недавно — лишь в 1980 г. [35].

Почему на первый план выдвинуто изучение классических алгоритмов, а не построение новых, специально предназначенных для работы в условиях отклонения от классических предпосылок? Во-первых, потому, что классические алгоритмы в настоящее время наиболее распространены (благодаря сложившейся системе образования как прикладников, так и математиков).

Во-вторых, более новые подходы зачастую методологически уязвимы. Так, известная робастная модель засорения Тьюки-Хубера (см. главу 10) нацелена на борьбу с большими выбросами, которые зачастую физически невозможны из-за ограниченности интервала возможных значений измеряемой характеристики, в котором работает конкретное средство измерения. Следовательно, модель Тьюки-Хубера имеет скорее теоретическое значение, чем практическое. Сказанное, конечно, не означает, что следует прекратить разработку, изучение и внедрение непараметрических и устойчивых методов, выделенных выше как «точки роста» современных эконометрики и прикладной статистики.

Использование асимптотических результатов при конечных объемах выборок.

Однако применять результаты подобного изучения придется при конечных объемах выборок. Возникает целый букет проблем, связанных с таким переходом. Часть из них обсуждалась в статье [37] в связи с изучением свойств статистик, построенных по выборкам из конкретных распределений.

Однако при обсуждении влияния отклонений от исходных предположений на свойства статистических процедур возникают дополнительные проблемы. Какие отклонения считать типичными? Ориентироваться ли на наиболее «вредные» отклонения, в наибольшей степени искажающие свойства алгоритмов, или же сосредоточить внимание на «типичных» отклонениях?

При первом подходе получаем гарантированный результат, но «цена» этого результата может быть излишне высокой. В качестве примера укажем на универсальное неравенство Берри-Эссеена для погрешности в ЦПТ [38,39]. Совершенно справедливо подчеркивает академик РАН А.А. Боровков [39, с,172], что «скорость сходимости в реальных задачах, как правило, оказывается лучше.»

При втором подходе возникает вопрос, какие отклонения считать «типичными». Попытаться ответить на этот вопрос можно, анализируя большие массивы реальных данных. Вполне естественно, что ответы различных исследовательских групп будут различаться.

Одна из ложных идей — использование при анализе возможных отклонений только какого-либо конкретного параметрического семейства – распределений Вейбулла-Гнеденко, трехпараметрического семейства гамма — распределений и др. Как уже отмечалось выше, еще в 1927 г. акад. АН СССР С.Н. Бернштейн обсуждал методологическую ошибку, состоящую в сведении всех эмпирических распределений к четырехпараметрическому семейству Пирсона [5].

Однако и до сих пор параметрические методы статистики весьма популярны, особенно среди прикладников, и вина за это заблуждение лежит прежде всего на преподавателях статистических методов.

Выбор одного из многих критериев для проверки конкретной гипотезы.

В качестве примера рассмотрим задачу проверки однородности двух независимых выборок. Как известно [13], для ее решения можно предложить массу критериев: Стьюдента, Крамера-Уэлча, Лорда, хи — квадрат, Вилкоксона (Манна-Уитни), Ван – дер — Вардена, Сэвиджа, Н.В.Смирнова, типа омега-квадрат (Лемана-Розенблатта), Г.В. Мартынова и др. Какой выбрать?

Естественным образом приходит в голову идея «голосования»: провести проверку по многим критериям, а затем принять решение «по большинству голосов». С точки зрения статистической теории такая процедура приводит попросту к построению еще одного критерия, который априори ничем не лучше прежних (но и не хуже), но более труден для изучения. С другой стороны, если совпадают решения по всем рассмотренным статистическим критериям, исходящим из различных принципов, то в соответствии с концепцией устойчивости, развитой в монографии [14], это повышает доверие к полученному общему решению.

Распространено, особенно среди математиков, ложное и вредное мнение о необходимости поиска оптимальных методов, решений и т.д. Дело в том, что оптимальность обычно исчезает при отклонении от исходных предпосылок. Так, среднее арифметическое в качестве оценки математического ожидания является оптимальной оценкой только тогда, когда исходное распределение — нормальное (см., например, монографию [40]), в то время как состоятельной оценкой — всегда, лишь бы математическое ожидание существовало. С другой стороны, для любого произвольно взятого метода оценивания или проверки гипотез обычно можно так сформулировать понятие оптимальности, чтобы рассматриваемый метод стал оптимальным – с этой специально выбранной точки зрения. Возьмем, например, выборочную медиану как оценку математического ожидания. Она, разумеется, оптимальна, хотя и в другом смысле, чем среднее арифметическое (оптимальное для нормального распределения).

А именно, для распределения Лапласа выборочная медиана является оценкой максимального правдоподобия, а потому оптимальной — в том смысле, в каком оптимальной является любая оценка максимального правдоподобия. Соответствующее понятие оптимальности требует аккуратных формулировок, оно строго изложено в монографии [41].

Как известно, оценки максимального правдоподобия удобны при теоретических рассмотрениях, а при анализе конкретных экономических, технических и иных данных следует применять одношаговые оценки (см. об этом статью [42]).

Критерии однородности были проанализированы в монографии проф. Я.Ю. Никитина [43].

Естественных подходов к сравнению критериев несколько — на основе асимптотической относительной эффективности по Бахадуру, Ходжесу — Леману, Питмену. И выяснилось, что каждый критерий является оптимальным при соответствующей альтернативе или подходящем распределении на множестве альтернатив. При этом математические выкладки обычно используют альтернативу сдвига, сравнительно редко встречающуюся в практике анализа реальных статистических данных (в связи с критерием Вилкоксона эта альтернатива обсуждалась в главе 4).

Итог печален — блестящая математическая техника, продемонстрированная в монографии [43], не позволяет дать рекомендации для выбора критерия проверки однородности при анализе реальных данных. Другими словами, с точки зрения работы прикладника, т.е. анализа конкретных данных, монография [43] бесполезна. Блестящее владение математикой и огромное трудолюбие, продемонстрированные автором этой монографии, увы, ничего не принесли практике.

Конечно, каждый практически работающий статистик так или иначе решает для себя проблему выбора статистического критерия. На основе ряда методологических соображений в главе 4 мы остановили свой выбор на состоятельном против любой альтернативы критерии типа омега-квадрат (Лемана-Розенблатта).

Однако остается чувство неудовлетворенности в связи с недостаточной теоретической обоснованностью этого выбора.

Организация теоретических работ в области эконометрики и прикладной статистики.

Приходится с сожалением констатировать, что в рамках научной специальности «теория вероятностей и математическая статистика» наблюдается четко выраженное игнорирование проблем статистического анализа реальных данных и уход в глубь узкоматематических исследований, которые ничего не могут дать практике. Причины этого явления, типичного для математических дисциплин, обсуждались выше. Поэтому нет оснований ожидать, что при «естественном ходе событий» будут получены существенные продвижения в рассмотренных выше нерешенных проблемах эконометрики и прикладной математической статистики.

Помочь может выделение государственными структурами системы грантов, направленных на поддержку работ в области нерешенных эконометрики и прикладной математической статистики. Принципиальным шагом явилось бы выделение эконометрики и прикладной математической статистики как самостоятельных научных направлений, отличных как от чисто математических дисциплин типа «теории вероятностей и математической статистики», так и от, например, ветви экономической теории, известной в официальных кругах под названием «статистика».

О прикладных работах с использованием методов прикладной статистики.

Несколько огрубляя, можно сказать, что реально используется только то, что имеется в учебниках и справочниках, в широко распространенных программных продуктах, а научные публикации с точки зрения прикладника представляют собой «информационный шум». Ситуация усугубляется традиционным ненормальным положением в отечественной статистике [7], наличием ошибок во многих изданиях.

К сожалению, учебная и научная литература на русском языке (как, впрочем, и на иных языках) по эконометрике и прикладной статистике в целом далека от совершенства, переполнена устаревшими методологическими подходами и прямыми ошибками. До сих пор наилучшим изданием остаются «Таблицы математической статистики» Л.Н. Большева и Н.В.Смирнова [13], созданные в 60-х годах.

Хотя студенты почти всех специальностей изучают в конце курса высшей математики раздел «теория вероятностей и математическая статистика», реально они знакомятся лишь с некоторыми основными понятиями и результатами, которых явно не достаточно для практической работы. С некоторыми математическими методами исследования студенты встречаются в специальных курсах (например, таких, как «Прогнозирование и технико-экономическое планирование», «Технико-экономический анализ», «Контроль качества продукции», «Маркетинг», «Контроллинг», «Математические методы прогнозирования» и др.), однако изложение в большинстве случаев носит весьма сокращенный и рецептурный характер. В результате подавляющую часть специалистов по эконометрике, прикладной математической статистике и их применению следует считать самоучками.

Поэтому большое значение имеет введение в технических вузах курса «Прикладная математическая статистика», а на экономических факультетах таких вузов – курса «Эконометрика», поскольку эконометрика – это, как известно, статистический анализ конкретных экономических данных (см. главу 1).

Это естественно делать, например, в рамках подпрограммы «Технологии подготовки кадров для национальной технологической базы» федеральной целевой программы «Национальная технологическая база». Естественно, что курсы «Прикладная математическая статистика» и «Эконометрика» должны быть обеспечены соответствующими учебниками и учебными пособиями, методическими материалами и обучающими компьютерными системами.

Только через систему образования можно поднять уровень массового применения эконометрики и прикладной статистики и сократить отставание от «переднего края» теории. А это отставание в настоящее время составляет не менее 20 (но и не более 100) лет.

Высокие статистические технологии и эконометрика

В настоящем пункте подробно обсуждается ранее введенное понятие «высокие статистические технологии». Рассматриваются причины широкого распространения устаревших и частично ошибочных «низких» статистических технологий. Показано, что из всех путей повышения качества прикладных статистических исследований наиболее эффективным является расширение обучения «высоким статистическим технологиям», в том числе под именем эконометрики. Описан опыт работы Института высоких статистических технологий и эконометрики МГТУ им. Н.Э. Баумана.

Термин «высокие технологии» популярен в современной научно-технической литературе. Он используется для обозначения наиболее передовых технологий, опирающихся на последние достижения научно-технического прогресса. Есть такие технологии и среди технологий статистического анализа данных — как в любой интенсивно развивающейся научно-практической области.

Примеры высоких статистических технологий и входящих в них алгоритмов анализа данных, подробный анализ современного состояния и перспектив развития даны выше при обсуждении “точек роста” эконометрики как научно-практической дисциплины. В качестве «высоких статистических технологий» были выделены технологии непараметрического анализа данных; устойчивые (робастные) технологии; технологии, основанные на размножении выборок, на использовании достижений статистики нечисловых данных и статистики интервальных данных.

Термин «высокие статистические технологии».

«Высокие», как и в других областях, означает, что статистическая технология опирается на современные достижения статистической теории и практики, в частности, теории вероятностей и прикладной математической статистики. При этом «опирается на современные научные достижения» означает, во-первых, что математическая основа технологии получена сравнительно недавно в рамках соответствующей научной дисциплины, во-вторых, что алгоритмы расчетов разработаны и обоснованы в соответствии в нею (а не являются т.н. «эвристическими»).

Со временем, если новые подходы и результаты не заставляют пересмотреть оценку применимости и возможностей технологии, заменить ее на более современную, «высокие статистические технологии» переходят в «классические статистические технологии», такие, как метод наименьших квадратов. Итак, высокие статистические технологии — плоды недавних серьезных научных исследований. Здесь два ключевых понятия — «молодость» технологии (во всяком случае, не старше 50 лет, а лучше — не старше 10 или 30 лет) и опора на «высокую науку».

Термин «статистические» привычен, но разъяснить его нелегко. Во всяком случае, к деятельности Государственного комитета РФ по статистике высокие статистические технологии отношения не имеют. Как известно, сотрудники проф. В.В. Налимова собрали более 200 определений термина «статистика» [44].

Полемика вокруг терминологии иногда принимает весьма острые формы (см., например, редакционные замечания к статье [1], написанные в стиле известных высказываний о генетике и кибернетике конца 1940-х годов).

Современное представление о терминологии в области теории вероятностей и математической статистики отражено в Приложении 1 к настоящей книге, подготовленном в противовес распространенным ошибкам и неточностям в этой области. В частности, с точки зрения эконометрики статистические данные – это результаты измерений, наблюдений, испытаний, анализов, опытов, а «статистические технологии» — это технологии анализа статистических данных.

Наконец, редко используемый применительно к статистике термин «технологии». Статистический анализ данных, как правило, включает в себя целый ряд процедур и алгоритмов, выполняемых последовательно, параллельно или по более сложной схеме. В частности, можно выделить следующие этапы:

  • планирование статистического исследования;
  • организация сбора необходимых статистических данных по оптимальной или хотя бы рациональной программе (планирование выборки, создание организационной структуры и подбор команды эконометриков или статистиков, подготовка кадров, которые будут заниматься сбором данных, а также контролеров данных и т.п.);
  • непосредственный сбор данных и их фиксация на тех или иных носителях (с контролем качества сбора и отбраковкой ошибочных данных по соображениям предметной области);
  • первичное описание данных (расчет различных выборочных характеристик, функций распределения, непараметрических оценок плотности, построение гистограмм, корреляционных полей, различных таблиц и диаграмм и т.д.),

— оценивание тех или иных числовых или нечисловых характеристик и параметров распределений (например, непараметрическое интервальное оценивание коэффициента вариации или восстановление зависимости между откликом и факторами, т.е. оценивание функции),

  • проверка статистических гипотез (иногда их цепочек — после проверки предыдущей гипотезы принимается решение о проверке той или иной последующей гипотезы),
  • более углубленное изучение, т.е.

применение различных алгоритмов многомерного статистического анализа, алгоритмов диагностики и построения классификации, статистики нечисловых и интервальных данных, анализа временных рядов и др.;

  • проверка устойчивости полученных оценок и выводов относительно допустимых отклонений исходных данных и предпосылок используемых вероятностно-статистических моделей, допустимых преобразований шкал измерения, в частности, изучение свойств оценок методом размножения выборок;

— применение полученных статистических результатов в прикладных целях (например, для диагностики конкретных материалов, построения прогнозов, выбора инвестиционного проекта из предложенных вариантов, нахождения оптимальных режима осуществления технологического процесса, подведения итогов испытаний образцов технических устройств и др.),

  • составление итоговых отчетов, в частности, предназначенных для тех, кто не является специалистами в эконометрических и статистических методах анализа данных, в том числе для руководства — «лиц, принимающих решения».

Возможны и иные структуризации статистических технологий. Важно подчеркнуть, что квалифицированное и результативное применение статистических методов — это отнюдь не проверка одной отдельно взятой статистической гипотезы или оценка параметров одного заданного распределения из фиксированного семейства. Подобного рода операции — только отдельные кирпичики, из которых складывается здание статистической технологии. Между тем учебники и монографии по статистике обычно рассказывают об отдельных кирпичиках, но не обсуждают проблемы их организации в технологию, предназначенную для прикладного использования.

Итак, процедура эконометрического или статистического анализа данных – это информационный технологический процесс, другими словами, та или иная информационная технология. Статистическая информация подвергается разнообразным операциям (последовательно, параллельно или по более сложным схемам).

В настоящее время об автоматизации всего процесса статистического анализа данных говорить было бы несерьезно, поскольку имеется слишком много нерешенных проблем, вызывающих дискуссии среди статистиков. «Экспертные системы» в области статистического анализа данных пока не стали рабочим инструментом статистиков. Ясно, что и не могли стать. Можно сказать и жестче — это пока научная фантастика или даже вредная утопия.

В литературе статистические технологии рассматриваются явно недостаточно. В частности, обычно все внимание сосредотачивается на том или ином элементе технологической цепочки, а переход от одного элемента к другому остается в тени. Между тем проблема «стыковки» статистических алгоритмов, как известно, требует специального рассмотрения, поскольку в результате использования предыдущего алгоритма зачастую нарушаются условия применимости последующего. В частности, результаты наблюдений могут перестать быть независимыми, может измениться их распределение и т.п. (см. обсуждение этой проблемы в статье [45]).

Например, при проверке статистических гипотез большое значение имеют такие хорошо известные характеристики статистических критериев, как уровень значимости и мощность. Методы их расчета и использования при проверке одной гипотезы обычно хорошо известны. Если же сначала проверяется одна гипотеза, а потом с учетом результатов ее проверки — вторая, то итоговая процедура, которую также можно рассматривать как проверку некоторой (более сложной) статистической гипотезы, имеет характеристики (уровень значимости и мощность), которые, как правило, нельзя просто выразить через характеристики двух составляющих гипотез, а потому они обычно неизвестны. В результате итоговую процедуру нельзя рассматривать как научно обоснованную, она относится к эвристическим алгоритмам. Конечно, после соответствующего изучения, например, методом Монте-Карло, она может войти в число научно обоснованных процедур прикладной статистики.

Почему живучи «низкие статистические технологии»?

Примеры таких технологий неоднократно критически рассматривались на страницах различных изданий. В главе 4 рассматривались примеры неправильного использования критерия Вилкоксона для проверки совпадения теоретических медиан или функций распределения двух выборок. Можно также вспомнить критику использования классических процентных точек критериев Колмогорова и омега-квадрат в ситуациях, когда параметры оцениваются по выборке и эти оценки подставляются в «теоретическую» функцию распределения [46].

Приходилось констатировать широкое распространение таких порочных технологий и конкретных алгоритмов, в том числе в государственных и международных стандартах (перечень ошибочных стандартов дан в статье [47]), учебниках и распространенных пособиях. Тиражирование ошибок происходит обычно в процессе обучения в вузах или путем самообразования при использовании недоброкачественной литературы.

На первый взгляд вызывает удивление устойчивость «низких статистических технологий», их постоянное возрождение во все новых статьях, монографиях, учебниках. Поэтому, как ни странно, наиболее «долгоживущими» оказываются не работы, посвященные новым научным результатам, а публикации, разоблачающие ошибки, типа статьи [46].

Прошло больше 15 лет с момента ее публикации, но она по-прежнему актуальна, поскольку ошибочное применение критериев Колмогорова и омега-квадрат по-прежнему распространено.

Целесообразно рассмотреть здесь по крайней мере три обстоятельства, которые определяют эту устойчивость ошибок.

Во-первых, прочно закрепившаяся традиция. Учебники по т.н. «Общей теории статистики», написанные экономистами (поскольку учебная дисциплина «статистика» официально относится к экономике), если беспристрастно проанализировать их содержание, состоят в основном из введения в прикладную статистику, изложенного в стиле «низких статистических технологий», на уровне 1950-х годов. К «низкой» прикладной статистике добавлена некоторая информация о деятельности органов Госкомстата РФ. Примерно таково же положение со статистическими методами в медицине — одни и те же «низкие статистические технологии» переписываются из книги в книгу. Кратко говоря, «профессора-невежды порождают новых невежд» [7].

Так мы писали в 1990 г., но никто из указанных невежд даже не поинтересовался, какие ошибки имеются в виду. Новое поколение, обучившись ошибочным алгоритмам, их использует, а с течением времени и достижением должностей, ученых званий и степеней– пишет новые учебники со старыми ошибками.

Руководство Госкомстата РФ, воспользовавшись катаклизмами начала 1990-х годов, сделало вид, что ему неизвестно о создании в 1990 г. Всесоюзной статистической ассоциации и секции статистических методов в ее составе. Госкомстат РФ по-прежнему закрыт от «высоких статистических технологий» и работает на уровне позапрошлого века. Защита стала надежнее, поскольку в соответствии с современным стилем аппаратной работы на письма и обращения можно не отвечать.

Второе обстоятельство связано с большими трудностями при оценке экономической эффективности применения статистических методов вообще и при оценке вреда от применения ошибочных методов в частности. (А без такой оценки как докажешь, что «высокие статистические технологии» лучше «низких»?) Некоторые соображения по первому из этих вопросов приведены в статье [1], содержащей оценки экономической эффективности ряда работ по применению статистических методов. При оценке вреда от применения ошибочных методов приходится учитывать, что общий успех в конкретной инженерной или научной работе вполне мог быть достигнут вопреки их применению, за счет «запаса прочности» других составляющих общей работы. Например, преимущество одного технологического приема над другим можно продемонстрировать как с помощью критерия Крамера-Уэлча проверки равенства математических ожиданий (что правильно), так и с помощью двухвыборочного критерия Стьюдента (что, вообще говоря, неверно, т.к. обычно не выполняются условия применимости этого критерия — нет ни нормальности распределения, ни равенства дисперсий).

Кроме того, приходится выдерживать натиск невежд, защищающих свои ошибочные работы, например, государственные стандарты. Вместо исправления ошибок применяются самые разные приемы бюрократической борьбы с теми, кто разоблачает ошибки (подробнее см. статью [47]).

Третье существенное обстоятельство – трудности со знакомством с высокими статистическими технологиями. В течение последних 10 лет только журнал «Заводская лаборатория» систематически предоставлял такие возможности. К сожалению, поток современных отечественных и переводных статистических книг, выпускавшихся ранее, в частности, издательством “Финансы и статистика”, практически превратился в узкий ручеек… Возможно, более существенным является влияние естественной задержки во времени между созданием «новых статистических технологий» и написанием полноценной и объемной учебной и методической литературы. Она должна позволять знакомиться с новой методологией, новыми методами, теоремами, алгоритмами, технологиями не по кратким оригинальным статьям, а при обычном обучении в высшей школе.

Как ускорить внедрение «высоких статистических технологий»?

  • высокие статистические технологии;
  • классические статистические технологии,
  • низкие статистические технологии.

Основная современная проблема статистических технологий состоит в обеспечении того, чтобы в конкретных эконометрических и статистических исследованиях использовались только технологии первых двух типов. При этом под классическими статистическими технологиями понимаем технологии почтенного возраста, сохранившие свое значение для современной статистической практики. Таковы метод наименьших квадратов, статистики Колмогорова, Смирнова, омега-квадрат, непараметрические коэффициенты корреляции Спирмена и Кендалла и многие другие статистические процедуры.

Каковы возможные пути решения основной современной проблемы в области статистических технологий?

Бороться с конкретными невеждами — дело почти безнадежное. Отстаивая свое положение и должности, они либо нагло игнорируют информацию о своих ошибках, как это делают авторы ряда учебников по «Общей теории статистики», либо с помощью различных бюрократических приемов уходят и от ответственности, и от исправления ошибок по существу (как это было со стандартами по статистическим методам — см. статью [6]).

Третий вариант — признание и исправление ошибок — встречается, увы, редко. Но встречается.

Конечно, необходима демонстрация квалифицированного применения высоких статистических технологий. В 1960-70-х годах этим занималась лаборатория акад. А.Н. Колмогорова в МГУ им. М.В. Ломоносова. Секция «Математические методы исследования» журнала 2Заводская лаборатория» опубликовала за последние 40 лет более 1000 статей в стиле «высоких статистических технологий». В настоящее время действует Институт высоких статистических технологий и эконометрики МГТУ им. Н.Э.Баумана. Есть, конечно, целый ряд других научных коллективов, работающих на уровне «высоких статистических технологий».

Но самое основное — обучение. Какие бы новые научные результаты ни были получены, если они остаются неизвестными студентам, то новое поколение исследователей и инженеров вынуждено осваивать их по одиночке, а то и переоткрывать. Т.е. практически новые научные результаты почти исчезают, едва появившись. Как уже от меячалось, избыток публикаций превратился в тормоз развития. По нашим данным, к настоящему времени по статистическим технологиям опубликовано не менее миллиона статей и книг, из них не менее 100 тысяч являются актуальными для современного специалиста. Реальное число публикаций, которые способен освоить исследователь, по нашей оценке, не превышает 2-3 тысяч. Во всяком случае, в наиболее «толстом» (на русском языке) трехтомнике по статистике М. Дж. Кендалла и А. Стьюарта [8-10] приведено около 2 тысяч литературных ссылок. Итак, каждый исследователь знаком не более чем с 2-3% актуальных литературных источников. Поскольку существенная часть публикаций заражена «низкими статистическими технологиями», то исследователь самоучка имеет мало шансов выйти на уровень «высоких статистических технологий». Одновременно приходится констатировать, что масса полезных результатов погребена в изданиях прошлых десятилетий и имеет мало шансов встать в ряды «высоких статистических технологий» без специально организованных усилий современных специалистов.

Итак, еще и еще раз: основное — обучение. Несколько огрубляя, можно сказать: что то, что попало в учебные курсы и соответствующие учебные пособия — то сохраняется, что не попало — то пропадает. Подробнее об обучении — несколько позже. Сейчас — об упомянутом выше Институте высоких статистических технологий и эконометрики МГТУ им. Н.Э.Баумана.

Институт высоких статистических технологий и эконометрики.

Вначале Институт действовал как Всесоюзный центр статистических методов и информатики Центрального правления Всесоюзного экономического общества. В 1990-1992 гг. было выполнено более 100 хоздоговорных работ, в том числе для НИЦентра по безопасности атомной энергетики, ВНИИ нефтепереработки, ПО “Пластик”, ЦНИИ черной металлургии им. Бардина, НИИ стали, ВНИИ эластомерных материалов и изделий, НИИ прикладной химии, ЦНИИ химии и механики, НПО “Орион”, ВНИИ экономических проблем развития науки и техники, ПО “Уралмаш”, “АвтоВАЗ”, МИИТ, Казахского политехнического института, Донецкого государственного университета и многих других.

Затем Институт в качестве Лаборатории эконометрических исследований разрабатывал эконометрические методы анализа нечисловых данных, а также процедуры расчета и прогнозирования индекса инфляции и валового внутреннего продукта. Институт высоких статистических технологий и эконометрики развивал методологию построения и использования математических моделей процессов налогообложения (для Министерства налогов и сборов РФ), методологию оценки рисков реализации инновационных проектов высшей школы (для Министерства промышленности, науки и технологий РФ).

Институт оценивал влияние различных факторов на формирование налогооблагаемой базы ряда налогов (для Минфина РФ), прорабатывал перспективы применения современных статистических и экспертных методов для анализа данных о научном потенциале (для Министерства промышленности, науки и технологий РФ).

Важное направление связано с эколого-экономической тематикой — разработка методологического, программного и информационного обеспечения анализа рисков химико-технологических объектов (для Международного научно-технического центра), методов использования экспертных оценок в задачах экологического страхования (совместно с Институтом проблем рынка РАН).

Институт проводил маркетинговые исследования (в частности, для InstituteforMarketResearchGfKMR, Промрадтехбанка, фирм, торгующих растворимым кофе, программным обеспечением, оказывающих образовательные услуги).

Интерес вызывали работы Института по прогнозированию социально-экономического развития России методом сценариев, по экономико-математическому моделированию развития малых предприятий и созданию современных систем информационной поддержки принятия решений для таких организаций.

Институт ведет фундаментальные исследования в области высоких статистических технологий и эконометрики, в частности, в рамках НИЧ МГТУ им. Н.Э. Баумана и Российского фонда фундаментальных исследований. Информация об Институте представлена на сайте в ИНТЕРНЕТе (http://antorlov.nm.ru, зеркала http://antorlov.euro.ru, http://www.newtech.ru/~orlov), который в 2000 г. посетили более 10000 пользователей. Институтом издается еженедельная компьютерная газета «Эконометрика» (около 1000 подписчиков).

Архив выпусков газеты «Эконометрика» можно рассматривать как хрестоматию по различным разделам эконометрики, а также по высоким статистическим технологиям.

Зачем нужны высокие статистические технологии, разве недостаточно обычных статистических методов?

Важная часть эконометрики — применение высоких статистических технологий к анализу конкретных экономических данных, что зачастую требует дополнительной теоретической работы по доработке статистических технологий применительно к конкретной ситуации. Большое значение имеют конкретные эконометрические модели, например, модели экспертных оценок (глава 12) или экономики качества (глава 13).

И конечно, такие конкретные применения, как расчет и прогнозирование индекса инфляции (глава 7).. Сейчас уже многим ясно, что годовой бухгалтерский баланс предприятия может быть использован для оценки его финансово-хозяйственной деятельности только с привлечением данных об инфляции.

Термин «эконометрика» пока мало известен в России. А между тем в мировой науке эконометрика занимает достойное место. Напомним, что Нобелевские премии по экономике получили эконометрики Ян Тильберген, Рагнар Фриш, Лоуренс Клейн, Трюгве Хаавельмо. В 2000 г. к ним добавились еще двое Джеймс Хекман и Дэниель Мак-Фадден. Выпускается ряд научных журналов, полностью посвященных эконометрике, в том числе: Journal of Econometrics (Швеция), Econometric Reviews (США), Econometrica (США), Sankhya (Indian Journal of Statistics. Ser.D. Quantitative Economics. Индия), Publications Econometriques (Франция).

Применение эконометрики дает заметный экономический эффект. Например, в США — не менее 20 миллиардов долларов ежегодно только в области статистического контроля качества. А что у нас? Повторим, что в секции «Математические методы исследования» журнала «Заводская лаборатория» за последние 40 лет напечатано более 1000 статей по высоким статистическим технологиям и их применениям. Однако в нашей стране по ряду причин эконометрика не была сформирована как самостоятельное направление научной и практической деятельности, в отличие, например, от Польши, не говоря уже об англосаксонских странах. В результате специалистов — эконометриков у нас на порядок меньше, чем в США и Великобритании (Американская статистическая ассоциация включает более 20000 членов).

Преподавание высоких статистических технологий и эконометрики.

В настоящее время появилась надежда на эконометрику. В России начинают развертываться эконометрические исследования и преподавание эконометрики, в том числе не только Институтом высоких статистических технологий и эконометрики. Преподавание этой дисциплины ведется в Московском государственном университете экономики, статистики и информатики (МЭСИ), на экономическом факультете МГУ им. М.В. Ломоносова, в Высшей школе экономики и еще в нескольких экономических учебных заведениях. Среди технических вузов факультет «Инженерный бизнес и менеджмент» МГТУ им. Н.Э.Баумана имеет в настоящее время приоритет в преподавания эконометрики.

Мы полагаем, что экономисты, менеджеры и инженеры, прежде всего специалисты по контроллингу [48], должны быть вооружены современными средствами информационной поддержки, в том числе высокими статистическими технологиями и эконометрикой. Очевидно, преподавание должно идти впереди практического применения. Ведь как применять то, чего не знаешь?

Один раз — в 1990-1992 гг. мы уже обожглись на недооценке необходимости предварительной подготовки тех, для кого предназначены современные компьютерные средства. Наш коллектив (Всесоюзный центр статистических методов и информатики Центрального правления Всесоюзного экономического общества)разработал систему диалоговых программных систем обеспечения качества продукции. Их созданием руководили ведущие специалисты страны. Но распространение программных продуктов шло на 1-2 порядка медленнее, чем ожидалось. Причина стала ясна не сразу. Как оказалось, работники предприятий просто не понимали возможностей разработанных систем, не знали, какие задачи можно решать с их помощью, какой экономический эффект они дадут. А не понимали и не знали потому, что в вузах никто их не учил статистическим методам управления качеством. Без такого систематического обучения нельзя обойтись — сложные концепции «на пальцах» за пять минут не объяснишь.

Есть и противоположный пример — положительный. В середине 1980-х годов в советской средней школе ввели новый предмет «Информатика». И сейчас молодое поколение превосходно владеет компьютерами, мгновенно осваивая быстро появляющиеся новинки, и этим заметно отличается от тех, кому за 30-40 лет. Если бы удалось ввести в средней школе курс вероятности и статистики — а такой курс есть в Японии и США, Швейцарии, Кении и Ботсване, почти во всех странах (см. подготовленный ЮНЕСКО сборник докладов [50]) — то ситуация могла бы быть резко улучшена. Надо, конечно, добиться, чтобы такой курс был построен на высоких статистических технологиях, а не на низких. Другими словами, он должен отражать современные достижения, а не концепции пятидесятилетней или столетней давности.

Необходимо активизировать деятельность Российской ассоциации статистических методов. Но не стоит ограничиваться только внутренними проблемами сообщества специалистов по статистическим методам. Например, в созданном в России профессиональном экономическом обществе — Ассоциации контроллеров России — необходимо, на наш взгляд, выделить направление, посвященное применению высоких статистических технологий и эконометрики в контроллинге, а также учесть необходимость обучения основам этого направления при формировании мощной образовательной базы контроллинга.

Литература

1. Орлов А.И. Что дает прикладная статистика народному хозяйству?/ Вестник статистики. 1986. № 8. С.52 — 56

2. Комаров Д;М., Орлов А.И. Роль методологических исследований в разработке методоориентированных экспертных систем (на примере оптимизационных и статистических методов) — В сб.: Вопросы применения экспертных систем. — Минск: Центросистем, 1988. С.151-160.

3. Ленин В.И. Развитие капитализма в России. Процесс образования внутреннего рынка для крупной промышленности. — М.: Политиздат, 1986. — XII+610 с.

4. Гнеденко Б.В. Курс теории вероятностей: Учебник. — Изд. 6-е, переработанное и дополненное. — М.: Наука, Гл. ред. физ. — мат. лит., 1988. — 448 с.

5. Бернштейн С.Н. Современное состояние теории вероятностей и ее приложений. — В сб.: Труды Всероссийского съезда математиков в Москве 27 апреля — 4 мая 1927 г. — М.-Л.: ГИЗ, 1928. С.50-63.

6. Орлов А.И. О современных проблемах внедрения прикладной статистики и других статистических методов. / Заводская лаборатория. 1992. Т.58. № 1. С.67-74.

7. Орлов А.И. О перестройке статистической науки и её применений. / Вестник статистики. 1990. № 1. С.65 — 71.

8. Кендалл М., Стьюарт А. Теория распределений. — М.: Наука, 1966. — 566 с.

9. Кендалл М., Стьюарт А. Статистические выводы и связи. — М.: Наука, 1973. — 899 с.

10. Кендалл М., Стьюарт А. Многомерный статистический анализ и временные ряды. — М.: Наука, 1976. — 736 с.

11. Налимов В.В., Мульченко З.М. Наукометрия. Изучение развития науки как информационного процесса. — М.: Наука, 1969. — 192 с.

12. ГОСТ 11.011-83. Прикладная статистика. Правила определения оценок и доверительных границ для параметров гамма-распределения. — М.: Изд-во стандартов. 1984. — 53 с.

13. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. — М.: Наука, 1965 (1-е изд.), 1968 (2-е изд.), 1983 (3-е изд.).

14. Орлов А.И. Устойчивость в социально-экономических моделях. — М.: Наука,1979. — 296 с.

15. Смоляк С.А., Титаренко Б.П. Устойчивые методы оценивания: Статистическая обработка неоднородных совокупностей. — М;: Статистика, 1980. — 208 с.

16. Эфрон Б. Нетрадиционные методы многомерного статистического анализа. — М.: Финансы и статистика, 1988. — 263 с.

17. Суппес П., Зинес Дж. Основы теории измерений. — В сб.: Психологические измерения. -М: Мир,1967. С. 9-110.

18. Пфанцагль И. Теория измерений. — М.: Мир, 1976. — 166 с.

19. Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений. — М.: Мир, 1976. — 168 с.

20. Дэвид Г. Метод парных сравнений. — М.: Статистика, 1978. — 144 с.

21. Матерон Ж. Случайные множества и интегральная геометрия. — М.: Мир, 1978. — 318 с.

22. Терехина А.Ю. Анализ данных методами многомерного шкалирования. — М.: Наука, 1986. — 168 с.

23. Перекрест В.Т. Нелинейный типологический анализ социально-экономической информации: Математические и вычислительные методы. — Л.: Наука, 1983. — 176 с.

24. Кемени Дж., Снелл Дж. Кибернетическое моделирование: Некоторые приложения. — М.: Советское радио, 1972. — 192 с.

25. Тюрин Ю.Н., Литвак Б.Г., Орлов А.И., Сатаров Г.А., Шмерлинг Д.С. Анализ нечисловой информации. — М.: Научный Совет АН СССР по комплексной проблеме «Кибернетика», 1981. — 80 с.

26. Литвак Б.Г. Экспертная информация: Методы получения и анализа. — М.: Радио и связь, 1982. — 184 с.

27. Орлов А.И. Статистика объектов нечисловой природы и экспертные оценки. — В сб.: Экспертные оценки. Вопросы кибернетики. Вып.58. — М.: Научный Совет АН СССР по комплексной проблеме «Кибернетика», 1979. С.17-33.

28. Анализ нечисловой информации в социологических исследованиях. / Под ред. В.Г. Андреенкова, А.И.Орлова, Ю.Н. Толстовой. — М.: Наука, 1985. — 220 с.

29. Орлов А.И. Асимптотическое поведение статистик интегрального типа. / Доклады АН СССР. 1974. Т.219. № 4. С.808-811.

30. Орлов А.И. Асимптотическое поведение статистик интегрального типа. — В сб.: Вероятностные процессы и их приложения. Межвузовский сборник. — М.: МИЭМ, 1989. С.118-123.

31. Горский В.Г. Современные статистические методы обработки и планирования экспериментов в химической технологии. — В сб.: Инженерно-химическая наука для передовых технологий. Международная школа повышения квалификации Труды третьей сессии. 26-30 мая 1997, Казань, Россия / Под ред. В.А. Махлина. — М.: Научно-исследовательский физико-химический институт им. Карпова, 1997. С.261-293.

32. Плошко Б.Г., Елисеева И.И. История статистики: Учебное пособие. — М.: Финансы и статистика. 1990. — 295 с.

33. Эльясберг П.Е. Измерительная информация. Сколько ее нужно, как ее обрабатывать? — М.: Наука, 1983. — 208 с.

34. Крамер Г. Математические методы статистики. — М.: Мир, 1975. — 648 с.

35. Орлов А.И., Орловский И.В. О поправках на группировку. — В сб.: Прикладной многомерный статистический анализ. — М.: Наука, 1978. — С.339-342.

36. Орлов А.И. Поправка на группировку для коэффициента корреляции. / Экономика и математические методы. — 1980. — Т.XVI. — №4. — С.800-801.

37. Орлов А.И. Методы оценки близости допредельных и предельных распределений статистик. / Заводская лаборатория. — 1998. — Т.64. — № 5. — С.64-67.

38. Феллер В. Введение в теорию вероятностей и ее приложения. Т.2. — М.: Мир, 1984. — 751 с.

39. Боровков А.А. Теория вероятностей. — М.: Наука, 1976. — 352 с.

40. Каган А.М., Линник Ю.В., Рао С.Р. Характеризационные задачи математической статистики. — М.: Наука, 1972. — 656 с.

41. Ибрагимов И.А., Хасьминский Р.З. Асимптотическая теория оценивания. — М.: Наука, 1979. — 528 с.

42. Орлов А.И. О нецелесообразности использования итеративных процедур нахождения оценок максимального правдоподобия. / «Заводская лаборатория», 1986. Т.52. No.5. С.67-69.

43. Никитин Я.Ю. Асимптотическая эффективность непараметрических критериев. — М.: Наука, 1995. — 240 с.

44. Никитина Е.П., Фрейдлина В.Д., Ярхо А.В. Коллекция определений термина «статистика» / Межфакультетская лаборатория статистических методов. Вып.37. — М.: Изд-во Московского государственного университета им. М.В. Ломоносова, 1972. — 46 с.

45. Орлов А.И. Проблема множественных проверок статистических гипотез. / Заводская лаборатория. 1996. Т.62. No.5. С.51-54.

46. Орлов А.И. Распространенная ошибка при использовании критериев Колмогорова и омега-квадрат. / Заводская лаборатория. — 1985. — Т.51. — No.1. — С.60-62.

47. Орлов А.И. Сертификация и статистические методы. / Заводская лаборатория. 1997. Т.63. No.З. С.55-62.

48. Контроллинг в бизнесе. Методологические и практические основы построения контроллинга в организациях / А.М. Карминский, Н.И. Оленев, А.Г. Примак, С.Г.Фалько. — М.: Финансы и статистика, 1998. — 256 с.

49. Орлов А. И. Задачи оптимизации и нечеткие переменные. — М.: Знание, 1980.- 64 с.

50. The teaching of statistics / Studies in mathematics education. Vol.7. — Paris, UNESCO, 1989. — 258 pp.