Таблица № 1
ПН ПО |
В1 |
В2 |
В3 |
В4 |
В5 |
Запасы аi |
|
А1 |
10 |
8 |
5 |
6 |
9 |
48 |
|
А2 |
6 |
7 |
8 |
6 |
5 |
30 |
|
А3 |
8 |
7 |
10 |
8 |
7 |
27 |
|
А4 |
7 |
5 |
4 |
6 |
8 |
20 |
|
Заявки bj |
18 |
27 |
42 |
12 |
26 |
125 |
|
Будем заполнять таблицу перевозками постепенно начиная с левой верхней ячейки («северо-западного угла» таблицы).
Будем рассуждать при этом следующим образом. Пункт В1 подал заявку на 18 единиц груза. Удовлетворим эту заявку за счёт запаса 48, имеющегося в пункте А1 , и запишем перевозку 18 в клетке (1,1).
После этого заявка пункта В1 удовлетворена, а в пункте А1 осталось ещё 30 единиц груза. Удовлетворим за счёт них заявку пункта В2 (27 единиц), запишем 27 в клетке (1,2); оставшиеся 3 единицы пункта А1 назначим пункту В3 . В составе заявки пункта В3 остались неудовлетворёнными 39 единиц. Из них 30 покроем за счёт пункта А2 , чем его запас будет исчерпан, и ещё 9 возьмём из пункта А3. Из оставшихся 18 единиц пункта А3 12 выделим пункту В4 ; оставшиеся 6 единиц назначим пункту В5 , что вместе со всеми 20 единицами пункта А4 покроет его заявку. На этом распределение запасов закончено; каждый пункт назначения получил груз, согласно своей заявки. Это выражается в том, что сумма перевозок в каждой строке равна соответствующему запасу, а в столбце — заявке.
Таким образом, нами сразу же составлен план перевозок, удовлетворяющий балансовым условиям. Полученное решение является опорным решением транспортной задачи:
Таблица № 2
ПН ПО |
В1 |
В2 |
В3 |
В4 |
В5 |
Запасы аi |
|
А1 |
10 18 |
8 27 |
5 3 |
6 |
9 |
48 |
|
А2 |
6 |
7 |
8 30 |
6 |
5 |
30 |
|
А3 |
8 |
7 |
10 9 |
8 12 |
7 6 |
27 |
|
А4 |
7 |
5 |
4 |
6 |
8 20 |
20 |
|
Заявки bj |
18 |
27 |
42 |
12 |
26 |
125 |
|
Составленный нами план перевозок, не является оптимальным по стоимости, так как при его построении мы совсем не учитывали стоимость перевозок Сij.
Другой способ — способ минимальной стоимости по строке — основан на том, что мы распределяем продукцию от пункта Ai не в любой из пунктов Bj, а в тот, к которому стоимость перевозки минимальна. Если в этом пункте заявка полностью удовлетворена, то мы убираем его из расчетов и находим минимальную стоимость перевозки из оставшихся пунктов Bj. Во всем остальном этот метод схож с методом северо-западного угла. В результате, опорный план, составленный способом минимальной стоимости по строке выглядит, так как показано в таблице № 3. При этом методе может получиться, что стоимости перевозок Cij и Cik от пункта Ai к пунктам Bj
и Bk равны. В этом случае, с экономической точки зрения, выгоднее распределить продукцию в тот пункт, в котором заявка больше. Так, например, в строке 2: C21 = C24 , но заявка b1 больше заявки b4 , поэтому 4 единицы продукции мы распределим в клетку (2,1).
Таблица № 3
ПН ПО |
В1 |
В2 |
В3 |
В4 |
В5 |
Запасы аi |
|
А1 |
10 |
8 |
5 42 |
6 6 |
9 |
48 |
|
А2 |
6 4 |
7 |
8 |
6 |
5 26 |
30 |
|
А3 |
8 |
7 27 |
10 |
8 |
7 0 |
27 |
|
А4 |
7 14 |
5 |
4 |
6 6 |
8 |
20 |
|
Заявки bj |
18 |
27 |
42 |
12 |
26 |
125 |
|
Способ минимальной стоимости по столбцу аналогичен предыдущему способу. Их отличие состоит в том, что во втором способе мы распределяем продукцию от пунктов Bi к пунктам Aj по минимальной стоимости Cji.
Опорный план, составленный способами минимальных стоимостей, обычно более близок к оптимальному решению. Так в нашем примере общие затраты на транспортировку по плану, составленному первым способом F0 = 1039, а по второму F0 = 723. Клетки таблицы, в которых стоят ненулевые перевозки, являются базисными . Их число должно равняться m + n — 1. Необходимо отметить также, что встречаются такие ситуации, когда количество базисных клеток меньше чем m + n — 1. В этом случае распределительная задача называется вырожденной. И следует в одной из свободных клеток поставить количество перевозок равное нулю. Так, например, в таблице № 3:
m + n — 1 = 4 + 5 — 1 = 8,
а базисных клеток 7, поэтому нужно в одну из клеток строки 3 или столбца 2 поставить значение “0”. Например в клетку (3,5).
Составляя план по способам минимальных стоимостей в отличии от плана по способу северо-западного угла мы учитываем стоимости перевозок Cij , но все же не можем утверждать, что составленный нами план является оптимальным.
Распределительный метод оптимального плана
Таблица №4
ПН ПО |
В1 |
В2 |
В3 |
В4 |
В5 |
Запасы аi |
|
А1 |
10 |
8 27 |
5 21 |
6 |
9 |
48 |
|
А2 |
6 18 |
7 |
8 12 |
6 |
5 |
30 |
|
А3 |
8 |
7 |
10 9 |
8 12 |
7 6 |
27 |
|
А4 |
7 |
5 |
4 |
6 |
8 20 |
20 |
|
Заявки bj |
18 |
27 |
42 |
12 |
26 |
125 |
|
На этом способе уменьшения стоимости в дальнейшем и будет основан алгоритм оптимизации плана перевозок. Циклом в транспортной задаче мы будем называть несколько занятых клеток, соединённых замкнутой, ломанной линией, которая в каждой клетке совершает поворот на 90°. Существует несколько вариантов цикла:
1.) 2.) 3.)
Нетрудно убедиться, что каждый цикл имеет чётное число вершин и значит, чётное число звеньев (стрелок).
Условимся отмечать знаком + те вершины цикла, в которых перевозки необходимо увеличить, а знаком — , те вершины, в которых перевозки необходимо уменьшить. Цикл с отмеченными вершинами будем называть означенным. Перенести какое-то количество единиц груза по означенному циклу, это значит увеличить перевозки, стоящие в положительных вершинах цикла, на это количество единиц, а перевозки, стоящие в отрицательных вершинах уменьшить на то же количество. Очевидно, при переносе любого числа единиц по циклу равновесие между запасами и заявками не меняется: по прежнему сумма перевозок в каждой строке равна запасам этой строки, а сумма перевозок в каждом столбце — заявке этого столбца. Таким образом, при любом циклическом переносе, оставляющем перевозки неотрицательными допустимый план остаётся допустимым.
Стоимость же плана при этом может меняться: увеличиваться или уменьшатся. Назовём ценой цикла увеличение стоимости перевозок при перемещении одной единицы груза по означенному циклу. Очевидно, цена цикла ровна алгебраической сумме стоимостей, стоящих в вершинах цикла, причём стоящие в положительных вершинах берутся со знаком + , а в отрицательных со знаком — . Обозначим цену цикла через g.
При перемещении одной единицы груза по циклу стоимость перевозок увеличивается на величину g. При перемещении по нему k единиц груза стоимость перевозок увеличиться на kg. Очевидно, для улучшения плана имеет смысл перемещать перевозки только по тем циклам, цена которых отрицательна. Каждый раз, когда нам удаётся совершить такое перемещение, стоимость плана уменьшается на соответствующую величину kg. Так как перевозки не могут быть отрицательными, мы будем пользоваться только такими циклами, отрицательные вершины которых лежат в базисных клетках таблицы, где стоят положительные перевозки.
m + n — 1
Применённый выше метод отыскания оптимального решения транспортной задачи называется распределённым; он состоит в непосредственном отыскании свободных клеток с отрицательной ценой цикла и в перемещении перевозок по этому циклу.
Распределительный метод решения транспортной задачи, с которым мы познакомились, обладает одним недостатком: нужно отыскивать циклы для всех свободных клеток и находить их цены. От этой трудоёмкой работы нас избавляет специальный метод решения транспортной задачи, который называется методом потенциалов.
Решение транспортной задачи методом потенциалов
Этот метод позволяет автоматически выделять циклы с отрицательной ценой и определять их цены. Пусть имеется транспортная задача с балансовыми условиямиСтоимость перевозки единицы груза из Ai в Bj равна C ij ; таблица стоимостей задана. Требуется найти план перевозок xij , который удовлетворял бы балансовым условиям и при этом стоимость всех перевозок была минимальна.Идея метода потенциалов для решения транспортной задачи сводиться к следующему. Представим себе что каждый из пунктов отправления Ai вносит за перевозку единицы груза (всё равно куда) какую-то сумму ai ; в свою очередь каждый из пунктов назначения Bj также вносит за перевозку груза (куда угодно) сумму bj . Эти платежи передаются некоторому третьему лицу (“перевозчику“).
Обозначим ai + bj = и ij (i=1. m; j=1. n) и будем называть величину и ij “псевдостоимостью» перевозки единицы груза из Ai в Bj . Заметим, что платежи ai и bj не обязательно должны быть положительными; не исключено, что “перевозчик» сам платит тому или другому пункту какую-то премию за перевозку.Также надо отметить, что суммарная псевдостоимость любого допустимого плана перевозок при заданных платежах (ai и bj ) одна и та же и от плана к плану не меняется. До сих пор мы никак не связывали платежи (ai и bj ) и псевдостоимости и ij с истинными стоимостями перевозок C ij . Теперь мы установим между ними связь. Предположим, что план xij невырожденный (число базисных клеток в таблице перевозок ровно m + n — 1).
Для всех этих клеток xij >0 . Определим платежи (ai и bj ) так, чтобы во всех базисных клетках псевдостоимости были ровны стоимостям:и ij = ai + bj = с ij, при xij >0. Что касается свободных клеток (где xij = 0), то в них соотношение между псевдостоимостями и стоимостями может быть, какое угодно. Оказывается соотношение между псевдостоимостями и стоимостями в свободных клетках показывает, является ли план оптимальным или же он может быть улучшен. Существует специальная теорема: Если для всех базисных клеток плана xij > 0,ai + bj = и ij= с ij, а для всех свободных клеток xij =0,ai + bj = и ij? с ij, то план является оптимальным и никакими способами улучшен быть не может. Нетрудно показать, что это теорема справедлива также для вырожденного плана, и некоторые из базисных переменных равны нулю. План обладающий свойством:и ij= с ij (для всех базисных клеток) (1)и ij? с ij (для всех свободных клеток) (2)называется потенциальным планом, а соответствующие ему платежи (ai и bj ) — потенциалами пунктов Ai и Bj (i=1,.,m; j=1,.,n ).Пользуясь этой терминологией вышеупомянутую теорему можно сформулировать так:Всякий потенциальный план является оптимальным
Итак, для решения транспортной задачи нам нужно одно — построить потенциальный план. Оказывается его можно построить методом последовательных приближений, задаваясь сначала какой-то произвольной системой платежей, удовлетворяющей условию (1).
При этом в каждой базисной клетке получиться сумма платежей, равная стоимости перевозок в данной клетке; затем, улучшая план следует одновременно менять систему платежей. Так, что они приближаются к потенциалам. При улучшении плана нам помогает следующее свойство платежей и псевдостоимостей: какова бы ни была система платежей ( ai и bj ) удовлетворяющая условию (1), для каждой свободной клетки цена цикла пересчёта равна разности между стоимостью и псевдостоимостью в данной клетке: gi,j= сi,j — и i,j. Таким образом, при пользовании методом потенциалов для решения транспортной задачи отпадает наиболее трудоёмкий элемент распределительного метода: поиски циклов с отрицательной ценой.Процедура построения потенциального (оптимального) плана состоит в следующем. В качестве первого приближения к оптимальному плану берётся любой допустимый план (например, построенный способом минимальной стоимости по строке).
В этом плане m + n — 1 базисных клеток, где m — число строк, n — число столбцов транспортной таблицы. Для этого плана можно определить платежи (ai и bj ), так, чтобы в каждой базисной клетке выполнялось условие: ai + bj = с ij (3)Уравнений всего m + n — 1 , а число неизвестных равно m +n. Следовательно, одну из этих неизвестных можно задать произвольно ( например, равной нулю).
После этого из m + n — 1 уравнений можно найти остальные платежи ai , bj , а по ним вычислить псевдостоимости, и i,j= ai + bj для каждой свободной клетки.Таблица №5
ПН / ПО |
В1 |
В2 |
В3 |
В4 |
В5 |
ai |
|
А1 |
10 и = 7 |
8 и = 6 |
5 42 |
6 6 |
9 и = 6 |
a1 = 0 |
|
А2 |
6 4 |
7 и = 5 |
8 и = 4 |
6 и = 5 |
5 26 |
a2= — 1 |
|
А3 |
8 и = 8 |
7 27 |
10 и = 6 |
8 и = 7 |
7 0 |
a3= 1 |
|
А4 |
7 14 |
5 и = 6 |
4 и = 5 |
6 6 |
8 и = 6 |
a4= 0 |
|
bj |
b1= 7 |
b2= 6 |
b3= 5 |
b4= 6 |
b5= 6 |
||
a4 = 0, ®
b4 = 6, так как a4 + b4 = С44 = 6, ®
a1 = 0, так как a1 + b4 = С14 = 6, ®
b3 = 5, так как a1 + b3 = С13 = 5, ®
b1 = 7, так как a4 + b1 = С41 = 7, ®
a2 = — 1, так как a2 + b1 = С21 = 6, ®
b5 = 6, так как a2 + b5 = С25 = 5, ®
a3 = 1, так как a3 + b5 = С35 = 7, ®
b2 = 6, так как a3 + b2 = С25 = 7.
иij Ј сij, Ј і
Таблица №6
ПН ПО |
В1 |
В2 |
В3 |
В4 |
В5 |
ai |
|
А1 |
10 |
8 |
5 42 |
6 6 |
9 |
0 |
|
А2 |
6 + 4 |
7 |
8 |
6 |
5 — 26 |
-1 |
|
А3 |
8 |
7 — 27 |
10 |
8 |
7 + 0 |
1 |
|
А4 |
7 — 14 |
5 + ы |
4 |
6 6 |
8 |
0 |
|
bj |
7 |
6 |
5 |
6 |
6 |
||
Теперь будем перемещать по циклу число 14, так как оно является минимальным из чисел, стоящих в клетках, помеченных знаком — . При перемещении мы будем вычитать 14 из клеток со знаком — и прибавлять к клеткам со знаком +. После этого необходимо подсчитать потенциалы ai и bj и цикл расчетов повторяется.
Итак, мы приходим к следующему алгоритму решения транспортной задачи методом потенциалов.
1. Взять любой опорный план перевозок, в котором отмечены m +n — 1 базисных клеток (остальные клетки свободные).
2. Определить для этого плана платежи (ai и bj ) исходя из условия, чтобы в любой базисной клетке псевдостоимости были равны стоимостям. Один из платежей можно назначить произвольно, например, положить равным нулю.
3. Подсчитать псевдостоимости и i,j = ai + bj для всех свободных клеток. Если окажется, что все они не превышают стоимостей, то план оптимален.
4. Если хотя бы в одной свободной клетке псевдостоимость превышает стоимость, следует приступить к улучшению плана путём переброски перевозок по циклу, соответствующему любой свободной клетке с отрицательной ценой (для которой псевдостоимость больше стоимости).
5. После этого заново подсчитываются платежи и псевдостоимости, и, если план ещё не оптимален, процедура улучшения продолжается до тех пор, пока не будет найден оптимальный план. Так в нашем примере после 2 циклов расчетов получим оптимальный план. При этом стоимость всей перевозки изменялась следующим образом: F0 = 723, F1 = 709, F2 = Fmin = 703.
Следует отметить так же, что оптимальный план может иметь и другой вид, но его стоимость останется такой же Fmin = 703.
Составьте оптимальный план перевозки угля с минимальными транспортными расходами с шахт Варгашорская (В), Западная (З) и Комсомольская (К), еженедельно добывающих соответственно 26,32 и 17тыс. т. Покупатели угля расположены в разных городах В, В, С и D, заявки которых составляют 28, 19, 12 и 16 тыс. т между поставщиками и потребителями представлены транспортной таблицей.
Шахты |
Потребители |
Добыча угля, тыс. тонн в неделю |
||||
A |
B |
C |
D |
|||
Западная |
70 |
76 |
72 |
68 |
32 |
|
Варгашорская |
80 |
84 |
82 |
77 |
26 |
|
Комсомольская |
80 |
83 |
82 |
76 |
17 |
|
Заявки, тыс. тонн |
28 |
19 |
12 |
16 |
||
Решение:
Математическая модель данной задачи имеет вид:
- F = 70х11+76х12+72х13+68х14+80х21+84х22 +82х23+77х24+80х9+83х10 +82х11+76х12 >min
Экранная форма для ввода условий задачи вместе с введенными в нее исходными данными представлена на рисунке:
При введении зависимостей лист MS Excel в режиме просмотра формул имеет вид:
После отражения закономерностей экранная форма принимает вид:
Поиск решения»
Оптимальное решение задачи в экранной форме имеет вид:
Минимальные транспортные расходы на перевозку угля равны 5715.
Заключение
Список используемой литературы
1. Еремин И.И., Астафьев Н.Н. Введение в теорию линейного и выпуклого программирования М.; Наука, 1976 г.
2. Карманов В.Г. Математическое программирование. — М.; Наука, 1986г.
3. Моисеев Н.Н., Иванов Ю.П., Столярова Е.М. Методы оптимизации. — М.; Наука, 1978г.
4. Иванов Ю.П., Лотов А.В. Математические модели в экономике. — М.; Наука, 1979г.
5. Бронштейн И.Н., Семендяев К.А. Справочник по математике. — М.; Наука, 1986г