Применение теории вероятностей в военном деле. Теория вероятности: возникновение и развитие

Реферат

Введение

протоколов, guide lines .

С середины 1980-х годов возник новый и важнейший фактор, революционизировавший все приложения теории вероятностей — возможность широкого использования быстрых и доступных компьютеров. Почувствовать всю громадность произошедшего переворота можно, если учесть, что один(!)современный персональный компьютер превосходит по быстродействию и памяти все(!) компьютеры СССР и США, имевшиеся к 1968 году, времени, когда уже были осуществлены проекты, связанные со строительством атомных электростанций, полетами на Луну, созданием термоядерной бомбы. Сейчас методом прямого экспериментирования можно получать результаты, которые ранее были недоступны — thinking of unthinkable .

7.Биоинформатика. Начиная с 1980-х годов количество известных последовательностей белков и нуклеиновых кислот стремительно возрастает. Объем накопленной информации таков, что только компьютерный анализ этих данных может решать задачи по извлечению информации.

8.Распознавание образов.

Неволина Екатерина Николаевна Екатеринбург УрГЭУ Руководитель – Кныш А. А. Практическое применение теории вероятностей. Актуальность. Теория вероятностей является одним из разделов математики, изучающим случайные события, случайные величины, их свойства и операции над ними. Методы теории вероятностей все шире находят свое применение в различных областях науки и техники, а также в обычной жизни. Особенность данного раздела науки заключается в рассмотрении таких явлений, в которых присутствует неопределенность. В статье мне бы хотелось рассмотреть примеры некоторых задач, демонстрирующих практическое применение теории вероятностей. Задачи с экономическим содержанием. 1. Одна из фирм собирается заключить контракт на поставку товара с сетью магазинов. При условии, что конкурент фирмы не станет одновременно претендовать на заключение контракта, вероятность заключения контракта оценивается в 0,85, В противном случае вероятность получения контракта составляет 0,6. По оценкам экспертов компании вероятность того, что конкурент выдвинет свои предложения по заключению контракта, равна 0,55. Чему равна вероятность заключения контракта для этой фирмы? . Данная задача решается с помощью формулы полной вероятности.

2. Экономист-аналитик условно подразделяет экономическую ситуацию в стране на «хорошую», «посредственную» и «плохую» и оценивает их вероятности для данного момента времени в 0,2; 0,7 и 0,15 соответственно. Некоторый индекс экономического состояния возрастает с вероятностью 0,65, когда ситуация «хорошая»; с вероятностью 0,35, когда ситуация посредственная, и с вероятностью 0,1, когда ситуация «плохая». Пусть в настоящий момент индекс экономического состояния возрос. Чему равна вероятность того, что экономика страны на подъеме? . Задача решается с помощью формулы Байеса. 3. Банк выдаёт 9 кредитов. Вероятность невозврата кредита равна 0,2 для каждого заёмщика. Какова вероятность того, что трое заёмщиков не выплатят кредит? Задача решается с помощью формулы Бернулли. 5. Деталь считается годной при отклонении Х линейного размера в абсолютном выражении меньше 1 мм. Отклонение Х является величиной, распределенной по нормальному закону, со среднем квадратическим отклонением   0.35 . Найти количество бракованных деталей в одной партии произведенных деталей (размер партии 1000 шт.), стоимость потерь от брака при себестоимости партии 15 млн. руб., доход от реализации оставшихся годных деталей и экономические потери при рыночной цене 19 000 руб.

12 стр., 5958 слов

Реферат: Теория прав собственности

... собственности со смешанной экономикой. Форма собственности — это характеристика сложной внут­ренней структуры отдельной формы собственности. Здесь в рамках отдельной формы сочетаются различные типы главных правомочий по ... финансово-промышленные группы, концерны, тресты и другие формы с равными право­мочиями по управлению, распределению доходов и распоряжению имуществом. В финансово-промышленных ...

за единицу продукции . Рассмотрим решение данной задачи. Т.к. Х – отклонение линейного размера в абсолютном выражении, то математическое ожидание М(Х)=а=0. Подставив в формулу  P  X     2      значения    0.35 и   1, получим P X  1  0,9956. Таким образом, в партии из 1000 деталей годными будут 995 деталей. При себестоимости партии 15 млн. руб. себестоимость каждой детали составит в среднем 15 000 руб. Стоимость потерь от брака составят 75000 рублей. Доход от реализации годных деталей по рыночной цене составит 995∙19000 =18,905 млн. руб. В связи с невозможностью реализовать часть продукции экономические потери составят 5∙19000=95000 руб. Методы теории вероятностей также используются в ставках на спорт. С помощью теории вероятностей стало возможным предугадывать и оценивать исходы различных матчей, а также выявлять продуктивность отдельно взятого игрока. Так, например, если мы рассматриваем баскетбол, то в качестве продуктивности игрока можно рассматривать вероятность его попадания в кольцо с различных точек. Приведем примеры задач. 1. На соревнованиях по баскетболу центровой игрок команды «N» бросает мяч в кольцо. За каждый забитый мяч команда получает 2 очка. Найти вероятность того, что за данный бросок центровым команда не получит ни одного очка (0 очков полагается лишь за промах).

2. Две равносильные баскетбольные команды играют в баскетбол. Что вероятнее: вести счет одну четверть из двух или две четверти из четырех (равный счет во внимание не принимается)? Данная задача решается с помощью формулы Бернулли. Итак, нахождение закономерностей в случайных явлениях — это задача теорий вероятности. Теория вероятности — это инструмент для изучения не видимых и многозначных взаимосвязей разных явлений во многочисленных областях науки, техники и экономики. Теория вероятности дает возможность правильно посчитать колебания спроса, предложения, цен и других экономических показателей. Теория вероятности есть часть базовой науки как статистика и прикладная информатика. Так как без теории вероятностей не может работать не одна прикладная программа, и компьютер в целом. И в теории игр она тоже является основной . Список использованных источников: 1. Вентцель Е. С. Теория вероятностей [Электрон. ресурс] : Учеб. пособие. – Москва. – Высшая школа, 1999. – 576 c. – Режим доступа: http://sernam.ru/book_tp.php 2. Методические указания для студентов по проведению практических работ по дисциплине «Математика» [Электрон. ресурс]. – Мончегорск, 2013. – Режим доступа: http://www.studfiles.ru/preview/3829108/ 3. Хуснутдинов, Р. Ш. Математика для экономистов в примерах и задачах [Электрон. ресурс] : учеб. пособие / Р. Ш. Хуснутдинов, В. А. Жихарев. – Санкт-Петербург: Лань, 2012. — 656 с. — Режим доступа: https://e.lanbook.com/book/4233

9 стр., 4039 слов

Курсовая работа: Математические методы в теории принятия решений

... методов следует иметь в виду, что все они носят рекомендательный характер и выбор окончательного решения всегда остается за человеком (ЛПР). Мы рассмотрим действие теории математических решений ... число в соответствии оценки с точки зрения принимающего решения. В экономике в качестве ... ситуации (x,y). Принятие решений в условиях определенности. При принятие решений в условиях определенности состояние ...

Содержание
Введение 3

1. История возникновения 4

2. Возникновение классического определения вероятности 9

3. Предмет теории вероятности 11

4. Основные понятия теории вероятности 13

5. Применение теории вероятностей в современном мире 15

6. Вероятность и воздушный транспорт 19 Заключение 20

Список литературы 21


Введение

Случай, случайность — с ними мы встречаемся повседневно: случайная встреча, случайная поломка, случайная находки, случайная ошибка. Этот ряд можно продолжать бесконечно. Казалось бы, тут нет места для математики, но и здесь наука обнаружила интересные закономерности — они позволяют человеку уверенно чувствовать себя при встрече со случайными событиями.
Теорию вероятностей можно определить как раздел математики, в котором изучаются закономерности присущие случайным событиям. Методы теории вероятностей широко применяются при математической обработке результатов измерений, а также во многих задачах экономики, статистики, страхового дела, массового обслуживания. Отсюда не трудно догадаться, что и в авиации теория вероятностей находит очень широкое применение.
Моя будущая диссертационная работа будет связана со спутниковой навигацией. Не только в спутниковой навигации, но и в традиционных средствах навигации, теория вероятностей получило очень широкое применение, потому что через вероятность количественно выражаются большинство эксплуатационно-технических характеристик радиотехнических средств.

1. История возникновения

Сейчас уже трудно установить, кто впервые поставил вопрос, пусть и в несовершенной форме, о возможности количественного измерения возможности появления случайного события. Ясно одно, что мало-мальски удовлетворительный ответ на этот вопрос потребовал длительного времени и значительных усилий ряда поколений выдающихся исследователей. В течение долгого периода исследователи ограничивались рассмотрением разного рода игр, особенно игр в кости, поскольку их изучение позволяет ограничиваться простыми и прозрачными математическими моделями. Однако следует заметить, что многие отлично понимали то, что позднее было сформулировано Христианом Гюйгенсом: «…я полагаю, что при внимательном изучении предмета читатель заметит, что имеет дело не только с игрой, но что здесь закладываются основы очень интересной и глубокой теории».
Мы увидим, что при дальнейшем прогрессе теории вероятностей глубокие соображения как естественнонаучного, так и общефилософского характера играли большую роль. Эта тенденция продолжается и в наши дни: мы постоянно наблюдаем, как вопросы практики — научной, производственной, оборонной — выдвигают перед теорией вероятностей новые проблемы и приводят к необходимости расширения арсенала идей, понятий и методов исследования.
Развитие теории вероятностей, а с нею и развитие понятия вероятности, можно разбить на
1.

15 стр., 7173 слов

Реферат: Развитие социально-экономических систем: теория и методология

... оценить соответствие парадигмальных альтернатив экономической теории задачам развития социально-экономических систем; раскрыть специфику природы цикличности развития социально-экономических систем; провести сравнительный анализ понятий «экономическое развитие» и «экономический рост»; определить контуры экономической теории с позиции парадигмы развития; проанализировать приращение знаний квантово ...

Предыстория теории вероятностей. В этот период, начало которого теряется в веках, ставились и решались элементарные задачи, которые позже будут отнесены к теории вероятностей. Никаких специальных методов в этот период не возникает. Этот период кончается работами Кардано, Пачоли, Тарталья и др.
С вероятностными представлениями мы встречаемся еще в античности. У Демокрита, Лукреция Кара и других античных ученых и мыслителей мы есть глубокие предвидения о строении материи с беспорядочным движением мелких частиц (молекул), рассуждения о равновозможных исходах и т.п. Еще в древности делались попытки сбора и анализ некоторых статистических материалов – все это(а так же и другие проявления внимания к случайным явлениям)создавало почву для выработки новых научных понятий, в том числе и понятия вероятности. Но античная наука не дошла до выделения этого понятия.
В философии вопрос о случайном, необходимом и возможном всегда был одним из основных. Философская разработка этих проблем также оказала влияние на формирование понятия вероятности. В целом в средневековье наблюдается только разрозненные попытки размыслить встречающиеся вероятностные рассуждения.
В работах Пачоли, Тарталья и Кардано уже делается попытка выделить новое понятие – отношение шансов – при решении ряда специфических задач, прежде всего комбинаторных.
2.

Возникновение теории вероятности как науки. К середине XVII в. вероятностные вопросы и проблемы, возникающие в статистической практике, в практике страховых обществ, при обработке результатов наблюдения и в других областях, привлекли внимание ученых, так как они стали актуальными вопросами. В первую очередь этот период связан с именами Паскаля, Ферма и Гюйгенса. В этот период вырабатываются специфические понятия, такие как математическое ожидание и вероятность (как отношение шансов), устанавливаются и используются первые свойства вероятности: теоремы сложения и умножения вероятностей. В это время теорема вероятностей находит применение в страховом деле, демографии, в оценке ошибок наблюдения, широко используя при этом понятие вероятности.
3. с появления работы Бернулли «Искусство предположений» (1713 г.), в которой в первые была доказана первая предельная теорема – простейший случай закона больших чисел. К этому периоду, который продолжался до середины XIX в., относятся работы Муавра, Лапласа, Гаусса и др. В центре внимания в это время стоят предельные теоремы. Теория вероятностей начинает широко применяться в различных областях естествознания. И хотя в этот период начинают применяться различные понятия вероятности (геометрическая вероятность, статистическая вероятность), господствующее положение занимает классическое определение вероятности.
4.

Следующий период развития теории вероятностей связан прежде всего с Петербургской математической школой. За два столетия развития теории вероятностей главными её достижениями были предельные теоремы, но не были выяснены границы их применения и возможности дальнейшего обобщения. Наряду с успехами были выявлены и существенные недостатки в её обосновании, это выражено в недостаточно четком представлении о вероятности. В теории вероятности создалось положение, когда дальнейшее её развитие требовало уточнения основных положений, усиления самих методов исследования.
Это было осуществлено русской математической школой во главе с Чебышевым. Среди её крупнейших представителей Маркова и Ляпунова.
В этот период в теорию вероятностей входят оценки приближений предельных теорем, а так же происходит расширение класса случайных величин, подчиняющихся предельным теоремам. В это время в теории вероятностей начинают рассматривать некоторые зависимые случайные величины (цепи Маркова).

23 стр., 11139 слов

Курсовая работа: По экономической теории «Методы экономической теории»

... роль в этом сыграла школа Н.А.Цаголова, занимавшаяся проблемами экономической теории как научной системы, общеметодологическими принципами анализа экономики, систематизацией различных аспектов взаимоотношения предмета и метода, исследованием ...

В теории вероятности возникают новые понятия, как «теория характеристических функций», «теория моментов» и др. И в связи с этим она получило широкое распространение в естественных науках, в первую очередь это относиться к физике. В этот период создается статистическая физика. Но это внедрение вероятностных методов и понятий в физику шло в довольно большом отрыве от достижений теории вероятностей. Вероятности, применяемые в физике, были не совсем теми же, как в математике. Существующие понятия вероятности не удовлетворяли потребностей естественных наук и в результате этого начали возникать различные трактовки вероятности, которые были трудно сводимы к одному определению.
Развитие теории вероятностей в начале XIX в. Привело к необходимости пересмотра и уточнения её логических основ, в первую очередь понятия вероятности. Это требовало развития физики и применения в ней вероятностных понятий и аппарата теории вероятностей; ощущалось неудовлетворенность классического обоснования лапласовского типа.
5. Современный период развития теории вероятностей начался с установления аксиоматики (аксиоматика — система аксиом какой-либо науки).

Этого в первую очередь требовала практика, так как для успешного применения теории вероятностей в физике, биологии и других областях науки, а так же в технике и военном деле необходимо было уточнить и привести в стройную систему её основные понятия. Благодаря аксиоматике теория вероятностей стала абстрактно-дедуктивной математической дисциплиной, тесно связанной с теорией множеств. Это обусловило широту исследований по теории вероятностей.
Первые работы этого периода связаны с именами Бернштейна, Мизеса, Бореля. Окончательное установление аксиоматики произошло в 30-е годы XX в. Анализ тенденций развития теории вероятностей позволил Колмогорову создать общепринятую аксиоматику. В вероятностных исследованиях аналогии с теорией множеств начали играть существенную роль. Идеи метрической теории функций все глубже стали проникать в теорию вероятностей. Возникла потребность в аксиоматизации теории вероятностей исходя из теоретико-множественных представлений. Такая аксиоматика и была создана Колмогоровым и способствовала тому, что теория вероятностей окончательно укрепилась как полноправная математическая наука.
В этот период понятие вероятности проникает почти во все во все сферы человеческой деятельности. Возникают самые различные определения вероятности. Многообразие определений основных понятий — существенная черта современной науки. Современные определения в науке — это изложение концепций, точек зрения, которых может быть много для любого фундаментального понятия, и все они отражают какую-нибудь существенную сторону определяемого понятия. Это относится и к понятию вероятности.

7 стр., 3253 слов

Реферат: Авто диссертации по машиностроению и машиноведению, 05.02.08, диссертация :Определение области эффективного применения станков с ЧПУ в единичном и мелкосерийном производстве деталей ГТД на основе анализа технологичности их конструкций

... станков с ЧПУ в зависимости от программы выпуска деталей; технологичности конструкции деталей при обработке на станках с ЧПУ; направления повышения эффективности обработки на станках с ЧПУ; технико-экономического анализа эффективности станков с ЧПУ ... проблемы организации единичного и мелкосерийного производства в условиях применения станков с ЧПУ. Для этого автором выполнены исследования по изучению ...

2. Возникновение классического определения вероятности

Понятие вероятности играет громадную роль в современной науке, а тем самым является существенным элементом современного мировоззрения в целом, современной философии. Все это порождает внимание и интерес к развитию понятия вероятности, которое тесно связано с общим движением науки. На понятия вероятности оказали существенное влияние достижения многих наук, но и это понятие в свою очередь заставляло их уточнять подход к исследованию миру.
Образование основных математических понятий представляет важные этапы в процессе математического развития. До конца XVII века наука так и не подошла к введению классического определения вероятности, а продолжала оперировать только с числом шансов, благоприятствующих тому или иному интересующему исследователей событию. Отдельные попытки, которые были отмечены у Кардано и у позднейших исследователей, не привели к ясному пониманию значения этого нововведения и остались инородным телом в завершенных работах. Однако, в тридцатых годах XVIII столетия классическое понятие вероятности стало общеупотребительным и никто из ученых этих лет не мог бы ограничиться только подсчетом числа благоприятствующих событию шансов.

Введение классического определения вероятности произошло не в результате однократного действия, а заняло длительный промежуток времени, на протяжении которого происходило непрерывное совершенствование формулировки, переход от частных задач к общему случаю.
Внимательное изучение, показывает, что еще в книге X. Гюйгенса «О расчетах в азартных играх» (1657) нет понятия вероятности как числа, заключенного между 0 и 1 и равного отношению числа благоприятствующих событию шансов к числу всех возможных. А в трактате Я. Бернулли «Искусство предположений» (1713) понятие это введено, хотя и в далеко несовершенной форме, но, что особенно важно, широко используется.
А. Муавр воспринял классическое определение вероятности, данное Бернулли, и вероятность события определил почти в точности так, как это делаем мы теперь. Он писал: «Следовательно, мы строим дробь, числитель которой будет число случаев появления события, а знаменатель — число всех случаев, при которых оно может появиться или не появиться, такая дробь будет выражать действительную вероятность его появления».

3. Предмет теории вероятностей, 4. Основные понятия теории вероятностей, 5. Применение теории вероятностей в современном мире, 6. Вероятность и воздушный транспорт, Список литературы, Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Федеральное государственное образовательное

бюджетное учреждение высшего профессионального образования

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ

ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Факультет: Финансы и кредит

КОНТРОЛЬНАЯ РАБОТА

43 стр., 21347 слов

Реферат: Детали машин : Технико-экономические обоснования обслуживания и ремонта автомобильного транспорта

... Расчёт технико-экономических показателей. 11 3.1 Расчёт стоимости основных фондов и нормируемых оборотных средств. 3.2 Расчёт капитальных вложений ... , требующих при ремонте лишь малотрудоемких разборочно-сборочных работ, связанных со сменой взаимозаменяемых быстроизнашивающихся деталей и узлов. ... 4 4. Производственная площадь мастерских: Fм= Hуд* n,м ², где: Hуд- удельная площадь на единицу техники в ...

по дисциплине «Теория вероятности и математическая статистика»

Студентка: Коханская Е.Ю.

Курс: 2 № группы: ЗСПЗ-ЭК201

Преподаватель: Бутковский О.Я.

Владимир 2014

1. На складе имеется 20 приборов, из которых два неисправны. При отправке потребителю проверяется исправность приборов.

Найти вероятность того, что три первых проверенных прибора окажутся исправными.

Испытание (опыт) заключается в выборе наудачу 3 приборов со склада, на котором имеется 20 приборов (из которых 18 исправны и 2 неисправны).

Элементарным событием (исходом испытания) является полученный набор из трёх приборов.

Пусть событие А заключается в том, что три первых проверенных прибора окажутся исправными.

Число исходов, благоприятствующих появлению события А (выбор трёх исправных приборов из):

Ответ: вероятность того, что три первых проверенных прибора окажутся исправными, равна 0,716.

2. В типографии имеется пять плоскопечатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна 0,9.

Найти вероятность того, что в данный момент работает:

а) две машины;

б) хотя бы одна машина

а) Р=0.9 — вероятность того, что 1 машина работает

т.е. вероятноcть работы 2 машин: p = 0,9*0,9=0,81 => 81%

б) Так как события «машина работает» и «машина не работает» (в данный момент) противоположные, то сумма их вероятностей равна единице:

Отсюда вероятность того, что машина в данный момент не работает, равна

Искомая вероятность

Р(А)= 1- q5=1-(0,1)5=1- 0,00001=0,99999=99%

Так как полученная вероятность весьма близка к единице, то, на основании следствия из принципа практической невозможности маловероятных событий, мы вправе заключить, что в данный момент работает хотя бы одна из машин.

Ответ: а) вероятность того, что в данный момент работает две машины = 81%

б) вероятность того, что в данный момент работает хотя бы одна машина= 99 %

3. При выпуске телевизоров количество экземпляров высшего качества в среднем составляет 80%. Выпущено 400 телевизоров.

а) вероятность того, что 300 из выпущенных телевизоров высшего качества;

б) границы, в которых с вероятностью 0,9907 заключена доля телевизоров высшего качества.

В этой задаче мы имеем дело с независимыми испытаниями, каждое из которых заключается в исследовании качества выпущенного телевизора. Число испытаний в нашем случае.

Событие состоит в том, что выпущенный телевизор высшего качества.

а) Вычислить искомую вероятность появления события ровно 300 раз в 400 испытаниях по формуле Бернулли затруднительно из-за громоздкости вычислений. Искомую вероятность можно вычислить, используя асимптотическую (приближённую) формулу Муавра — Лапласа.

Воспользуемся локальной теоремой Муавра — Лапласа: если вероятность наступления события в каждом из испытаний постоянна и отлична от 0 и 1, а число независимых испытаний достаточно велико, то вероятность вычисляется по приближённой формуле

6 стр., 2782 слов

Реферат: Управление качеством продукции

... качеству продукции. Качество — это авторитет фирмы, увеличение прибыли, рост процветания, и работа по управлению качеством ... показателям безотказности относятся: вероятность безотказной работы, вероятность отказа, средняя наработка ... Качество как фактор конкурентоспособности распространяется на всю национальную экономику. ... выразительность (знаковость, в том числе товарный знак, оригинальность, стилевое ...

Где — вероятность наступления события в каждом из испытаний,

Вероятность ненаступления события в каждом из испытаний,

Функция Гаусса.

Итак, событие состоит в том, что выпущенный телевизор высшего качества; вероятность наступления события в каждом из испытаний; вероятность ненаступления события в каждом из испытаний; число испытаний.

Значит вероятность того, что из 400 выпущенных телевизоров 300 высшего качества:

По таблице значений функции Гаусса находим: .

Следовательно, .

б) Воспользуемся следствием интегральной теоремы Муавра — Лапласа: если вероятность р наступления события А в каждом из испытаний постоянна и отлична от 0 и 1, а число независимых испытаний достаточно велико, то вероятность заданного отклонения относительной частоты (частости) появления события А от его вероятности вычисляется по приближённой формуле

Где р — вероятность наступления события А в каждом из испытаний,

q — вероятность ненаступления события А в каждом из испытаний,

п — число испытаний, — заданное отклонение.

Функция Лапласа.

вероятность случайный величина ожидание

В нашем случае; ; число испытаний.

Найдём отклонение, при котором, то есть в силу следствия интегральной теоремы Муавра — Лапласа

Итак, найдём из выражения

По таблице значений функции Лапласа находим: .

Следовательно

Значит с вероятностью 0,9907 можно ожидать отклонение относительной частоты появления события от.

Таким образом, границы, в которых с вероятностью 0,9907 заключена доля телевизоров высшего качества: .

Другими словами, с вероятностью 0,9907 доля телевизоров высшего качества составляет от 74,8 % до 85,2 %.

Ответ: а) вероятность того, что 300 из выпущенных телевизоров высшего качества равна 0,0022;

б) границы, в которых с вероятностью 0,9907 заключена доля телевизоров высшего качества от 74,8% до 85,2%.

4. В партии из восьми деталей шесть стандартных. Наугад отбирают две детали. Составить закон распределения случайной величины — числа стандартных деталей среди отобранных. Найти ее математическое ожидание, дисперсию и функцию распределения.

Дискретная случайная величина — число стандартных деталей среди отобранных деталей — имеет следующие возможные значения: , .

Найдём вероятности, этих возможных значений.

Искомый закон распределения дискретной случайной величины, соответственно, будет иметь вид:

Испытание (опыт) заключается в случайном выборе двух деталей из партии, содержащей 8 деталей (6 стандартных и 2 нестандартных).

Элементарным событием (исходом испытания) является полученный набор из 2 деталей.

Число всех возможных исходов испытания:

Число исходов, благоприятствующих тому, что число стандартных деталей среди отобранных деталей (то есть среди отобранных деталей 0 стандартных и 2 нестандартных):

Воспользовавшись классическим определением вероятности, получаем:

Число исходов, благоприятствующих тому, что число стандартных деталей среди отобранных деталей (то есть среди отобранных деталей 1 стандартная и 1 нестандартная):

10 стр., 4961 слов

Бизнес-план: Глава 28 линейная регрессия

... предприятий и получил следующие результаты (2-й и 3-й столбцы). Полагая, что между переменными ху у имеет место линейная зависимость, определим выборочное уравнение линейной регрессии ... С этой целью проводят испытание гипотез. Из генеральной совокупности проводят выборку ... 5,5 тыс. руб. в задаче 100. Замечание. Для прогноза значений ... столбце указаны квадраты соответствующих чисел 3-го столбца. Каждое число 2-го столбца ...

Воспользовавшись классическим определением вероятности, получаем:

Число исходов, благоприятствующих тому, что число стандартных деталей среди отобранных деталей (то есть среди отобранных деталей 2 стандартных и 0 нестандартных):

Воспользовавшись классическим определением вероятности, получаем:

Сумма вероятностей

Таким образом, искомый закон распределения дискретной случайной величины имеет вид:

Найдём математическое ожидание и функцию распределения случайной величины.

Математическое ожидание дискретной случайной величины:

Дисперсия дискретной случайной величины Х:

Функция распределения вероятностей (интегральная функция распределения) случайной величины задаётся формулой.

При построении функции будем получать её аналитическое выражение на каждом промежутке разбиения числовой прямой точками, соответствующими значениям заданной случайной величины, используя теорему сложения вероятностей несовместных событий:

a) для, так как в данном случае мы имеем дело с вероятностью невозможного события (в частности для);

b) для (в частности для);

c) для (в частности для);

Обобщая полученные данные, можно записать:

Ответ: ; ; ;

1. Из 1560 сотрудников предприятия по схеме собственно-случайной бесповторной выборки отобрано 100 человек для получения статистических данных о пребывании на больничном листе в течение года. Полученные данные представлены в таблице.

а) вероятность того, что среднее число дней пребывания на больничном листе среди сотрудников предприятия отличается от их среднего числа в выборке не более чем на один день (по абсолютной величине);

б) границы, в которых с вероятностью 0,95 заключена доля всех сотрудников, пребывающих на больничном листе не более семи дней;

в) объем бесповторной выборки, при котором те же границы для доли (см. п. б)) можно гарантировать с вероятностью 0,98.

а) Выберем число больничных, в каждом из интервалов (середина интервала).

В начальном интервале примем значение 2 дня. В конечном 12 дней, в прочих середину интервала.

Выборочная средняя равна:

Выборочная дисперсия:

найдём значение t из соотношения

Значения Ф(t) взяты из соответствующих таблиц.

б) В выборке доля таких сотрудников равна:

Полагая генеральную совокупность много большей, по сравнению с 100 имеем для требуемой величины:

Тогда искомые границы:

в) Объём для данного вида выборки и данной вероятности (t=2,33):

Ответ: а) вероятность того, что среднее число дней пребывания на больничном листе среди сотрудников предприятия отличается от их среднего числа в выборке не более чем на один день, равна 0,999;

б) границы, в которых с вероятностью 0,95 заключена доля всех сотрудников, пребывающих на больничном листе не более семи дней от 47,3% до 66,7%;

в) объем бесповторной выборки с вероятностью 0,98 равен 141сотруднику.

3. Распределение 110 образцов полимерных композиционных материалов по содержанию в них нефтешламов Х (%) и водопоглощению Y (%) представлено в таблице.

Необходимо:

1. Вычислить групповые средние, построить эмпирические линии регрессии.

2. Предполагая, что между переменными Х и Y существует линейная корреляционная зависимость:

а) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать содержательную интерпретацию полученных уравнений;

б) вычислить коэффициент корреляции; на уровне значимости? = 0,05 оценить его значимость и сделать вывод о тесноте и направлении связи между переменными Х и Y;

в) используя соответствующее уравнение регрессии, оценить средний процент водопоглощения в образцах, содержащих 35% нефтешламов.

1).

Вычислим групповые средние значения:

В таблице записана функциональная зависимость между и xi, или корреляционная зависимость у по х.

Построим эмпирические линии регрессии:

2).

Предполагая, что между переменными X и Y существует линейная корреляционная зависимость:

а) найдем уравнения прямых регрессии.

Случайная величина Х — содержание нефтешламов, %

Случайная величина Y — содержание водопоглащения, %.

Найдем ковариацию:

Вычислим коэффициент регрессии у по х и составим уравнение этой зависимости:

у = 1,117 х + 8,792

Вычислим коэффициент регрессии х по у и составим уравнение соответствующей зависимости:

х = 0,797 у -3,744

Построим графики прямых регрессии на одном чертеже с эмпирическими линиями регрессии:

б) Вычислим коэффициент корреляции:

Т.е. связь между переменными Х и Y (степенью автоматизации производства и ростом производительности труда) прямая, тесная.

Оценим значимость коэффициента корреляции по критерию Стьюдента:

Расчетное значение критерия Стьюдента больше табличного

tтабл.(?=0,05; k=108) = 1,6591, следовательно коэффициент корреляции является значимым.

в) Определим, используя уравнение регрессии у по х, средний процент водопоглощения в образцах, содержащих 35% нефтешламов:

у = 1,117 *35 + 8,792=47,887

Т.е. средний процент водопоглощения в образцах, содержащих 35% нефтешламов, составит 47,9%.