Введение
Использование функций нескольких переменных — широко применяемый для экономического анализа математический метод. Базовой задачей экономического анализа является изучение экономических величин, записываемых в виде функций. В каком направлении изменится доход государства при увеличении налогов или при введении импортных пошлин? Увеличится или уменьшится выручка фирмы при повышении цены на ее продукцию? Для решения подобных задач должны быть построены функции связи входящих в них переменных, которые затем изучаются с помощью методов дифференциального исчисления.
В экономике очень часто требуется найти оптимальное значение того или иного показателя: наивысшую производительность труда, максимальную прибыль, максимальный выпуск, минимальные издержки и т.д. Каждый показатель представляет собой функцию одного или нескольких аргументов. Например, выпуск можно рассматривать как функцию затрат труда и капитала (как это делается в производственных функциях).
Поскольку экономические показатели обычно зависят от многих факторов, нахождение оптимального значения показателя сводится к нахождению экстремума (максимума или минимума) функции одной или нескольких переменных.
Такие задачи хорошо изучены теорией функций нескольких переменных, использующей методы дифференциального исчисления. Многие задачи включают не только максимизируемую (минимизируемую) функцию, но и ограничения (например, бюджетное ограничение в задаче потребительского выбора).
1. Понятие функции двух и более переменных
Многие явления, происходящие в природе, экономике, общественной жизни нельзя описать с помощью функции одной переменной. Например, рентабельность предприятия зависит от прибыли, основных и оборотных фондов. Для изучения такого рода зависимостей и вводится понятие функции нескольких переменных.
Пусть – множество упорядоченных пар действительных чисел .
Если каждой упорядоченной паре чисел по некоторому закону поставлено в соответствие единственное действительное число , то говорят, что задана функция двух переменных или . Числа называются при этом независимыми переменными или аргументами функции, а число – зависимой переменной.
Например, формула Ra=P/A, выражающая рентабельность активов, является функцией двух переменных: P — прибыль за период и A — средняя величина активов за период.
Пару чисел иногда называют точкой , а функцию двух переменных – функцией точки .
Значение функции в точке обозначают или и называют частным значением функции двух переменных.
Предложение как экономическая категория, функция предложения, ...
... спрос и предложение, ввел новые категории и понятия, предложил «компромиссную» теорию цены. А. Маршалл был основателем кембриджской школы, оказывающей большое влияние на формирование и развитие экономической ... которые хотят продать. Некоторые рынки, как, например , Нью-йоркская фондовая биржа, действуют ... так же , как шкала спроса - поведение покупателей. *Шкала предложения (функция предложения) Шкала ...
Совокупность всех точек , в которых определена функция , называется областью определения этой функции. Для функции двух переменных область определения представляет собой всю координатную плоскость или ее часть, ограниченную одной или несколькими линиями.
2. Предел и непрерывность функции двух переменных
Понятия предела и непрерывности функции двух переменных аналогичны случаю одной переменной.
Пусть – произвольная точка плоскости. – окрестностью точки называется множество всех точек , координаты которых удовлетворяют неравенству . Другими словами, – окрестность точки – это все внутренние точки круга с центром в точке и радиусом .
Число называется пределом функции при (или в точке ), если для любого сколь угодно малого положительного числа существует (зависящее от ) такое, что для всех и удовлетворяющих неравенству выполняется неравенство .
Обозначается предел следующим образом:
или .
Функция называется непрерывной в точке , если:
1) определена в точке и ее окрестности;
2) имеет конечный предел ;
3) этот предел равен значению функции в точке , т.е. .
Функция называется непрерывной в некоторой области, если она непрерывна в каждой точке этой области.
Точки, в которых условие непрерывности не выполняется, называются точками разрыва этой функции. В некоторых функциях точки разрыва образуют целые линии разрыва. Например, функция имеет две линии разрыва: ось () и ось ().
Пример1. Найти точки разрыва функции .
Решение. Данная функция не определена в тех точках, в которых знаменатель обращается в нуль, т. е. в точках, где или . Это окружность с центром в начале координат и радиусом . Значит, линией разрыва исходной функции будет окружность .
3. Частные производные первого порядка. Полный дифференциал
Пусть задана функция двух переменных . Дадим аргументу приращение , а аргумент оставим неизменным. Тогда функция получит приращение , которое называется частным приращением по переменной и обозначается :
Аналогично, фиксируя аргумент и придавая аргументу приращение , получим частное приращение функции по переменной :
Величина называется полным приращением функции в точке .
Частной производной функции двух переменных по одной из этих переменных называется предел отношения соответствующего частного приращения функции к приращению данной переменной, когда последнее стремится к нулю (если этот предел существует).
Обозначается частная производная так: или , или .
Таким образом, по определению имеем:
Частные производные функции вычисляются по тем же правилам и формулам, что и функция одной переменной, при этом учитывается, что при дифференцировании по переменной , считается постоянной, а при дифференцировании по переменной постоянной считается .
Пример 2. Найти частные производные функции .
Решение. Чтобы найти считаем постоянной величиной и дифференцируем как функцию одной переменной :
Производная и ее применение в экономической теории
... порядка, чем , когда . Это часто используют при приближённых вычислениях. 1.3 Применение производной к исследованию функций Очень часто при решении экономических задач возникает необходимость принять решение на основе исследования и анализа функций ...
Аналогично, считая постоянной величиной, находим :
Полным дифференциалом функции называется сумма произведений частных производных этой функции на приращения соответствующих независимых переменных, т.е.
Учитывая, что дифференциалы независимых переменных совпадают с их приращениями, т.е. , формулу полного дифференциала можно записать в виде
или .
Пример 3. Найти полный дифференциал функции .
Решение. Так как , то по формуле полного дифференциала находим
4. Частные производные высших порядков
Частные производные и называют частными производными первого порядка или первыми частными производными.
Частными производными второго порядка функции называются частные производные от частных производных первого порядка.
Частных производных второго порядка четыре. Они обозначаются следующим образом:
- или ;
- или ;
- или ; или .
Аналогично определяются частные производные 3-го, 4-го и более высоких порядков. Например, для функции имеем:
, и т. д.
Частные производные второго или более высокого порядка, взятые по различным переменным, называются смешанными частными производными. Для функции таковыми являются производные . Заметим, что в случае, когда смешанные производные непрерывны, то имеет место равенство .
Пример 4. Найти частные производные второго порядка функции
Решение. Частные производные первого порядка для данной функции найдены в примере 3:
Дифференцируя и по переменным х и y, получим
;
;
5. Экстремум функции нескольких переменных. Необходимые и достаточные условия существования экстремума
Точка называется точкой минимума (максимума) функции , если существует такая окрестность точки , что для всех точек из этой окрестности выполняется неравенство , ().
Точки минимума и максимума функции называются точками экстремума, а значения функции в этих точках – экстремумами функции (минимумом и максимумом соответственно).
Заметим, что минимум и максимум функции имеют локальный характер, так как значение функции в точке сравнивается с ее значениями в точках, достаточно близких к .
Теорема 1 (необходимые условия экстремума).
Если – точка экстремума дифференцируемой функции , то ее частные производные и в этой точке равны нулю: .
Точки, в которых частные производные первого порядка равны нулю, называются критическими или стационарными. В критических точках функция может иметь экстремум, а может и не иметь.
Теорема 2 (достаточное условие экстремума).
Пусть функция :
- а) определена в некоторой окрестности критической точки , в которой и ;
- б) имеет непрерывные частные производные второго порядка .
Тогда, если , то функция в точке имеет экстремум: максимум, если А<0; минимум, если А>0; если , то функция в точке экстремума не имеет. В случае вопрос о наличии экстремума остается открытым.
При исследовании функции двух переменных на экстремум рекомендуется использовать следующую схему:
- Найти частные производные первого порядка: и .
- Решить систему уравнений и найти критические точки функции.
- Найти частные производные второго порядка: , , .
- Вычислить значения частных производных второго порядка в каждой критической точке и, используя достаточные условия, сделать вывод о наличии экстремума.
- Найти экстремумы функции.
Пример 5. Найти экстремумы функции .
Ы, курсовые работы, дипломы. Экономико-математическое моделирование. ...
... критической точке функция имеет экстремум. Поэтому, чтобы выяснить, в каких точках функция имеет экстремум, необходимо знать достаточные условия существования экстремума. Первое достаточное условие экстремума. Пусть функция y=f(х) непрерывна в точке х0и в некоторой её - окрестности имеет производную, кроме, ...
Решение. 1. Находим частные производные и :
2. Для определения критических точек решаем систему уравнений
или
Из первого уравнения системы находим: . Подставляя найденное значение y во второе уравнение, получим
откуда
Находим значения y, соответствующие значениям . Подставляя значения в уравнение , получим: .
Таким образом, имеем две критические точки: и .
3. Находим частные производные второго порядка:
;
;
4. Вычисляем значения частных производных второго порядка в каждой критической точке. Для точки имеем:
Так как
, то в точке экстремума нет.
В точке :
, , и, следовательно,
Значит, в силу достаточного условия экстремума, в точке функция имеет минимум, так как в этой точке и .
5. Находим значение функции в точке :
6. Условный экстремум
В теории функций нескольких переменных иногда возникают задачи, когда экстремум функции нескольких переменных необходимо найти не на всей области определения, а на множестве, удовлетворяющем некоторому условию.
Пусть – функция двух переменных, аргументы x и y которой удовлетворяют условию , называемому уравнением связи.
Точка называется точкой условного минимума (максимума) функции , если существует такая окрестность точки , что для всех точек из этой окрестности, удовлетворяющих условию , выполняется неравенство , ().