Теория игр и её практическое применение. Теория игр в экономике

Реферат

теории игр.

Что такое теория игр?

Теория игр представляет из себя сложное многоаспектное понятие, поэтому представляется невозможным привести толкование теории игр, используя лишь одно определение. Рассмотрим три подхода к определению теории игр.

1.Теория игр — математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу — в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.

2.Теория игр — это раздел прикладной математики, точнее — исследования операций. Чаще всего методы теории игр находят применение в экономике, чуть реже в других общественных науках — социологии, политологии, психологии, этике и других. Начиная с 1970-х годов её взяли на вооружение биологи для исследования поведения животных и теории эволюции. Очень важное значение теория игр имеет для искусственного интеллекта и кибернетики.

3.Одна из важнейших переменных, от которой зависит успех организации — конкурентоспособность. Очевидно, способность прогнозировать действия конкурентов означает преимущество для любой организации. Теория игр — метод моделирования оценки воздействия принятого решения на конкурентов.

История теории игр

Оптимальные решения или стратегии в математическом моделировании предлагались ещё в XVIII в. Задачи производства и ценообразования в условиях олигополии, которые стали позже хрестоматийными примерами теории игр, рассматривались в XIX в. А. Курно и Ж.Бертраном. В начале XX в. Э.Ласкер, Э.Цермело, Э.Борель выдвигают идею математической теории конфликта интересов.

Математическая теория игр берёт своё начало из неоклассической экономики. Впервые математические аспекты и приложения теории были изложены в классической книге 1944 года Джона фон Неймана и Оскара Моргенштерна «Теория игр и экономическое поведение».

Джон Нэш после окончания Политехнического института Карнеги с двумя дипломами — бакалавра и магистра — поступил в Принстонский университет, где посещал лекции Джона фон Неймана. В своих трудах Нэш разработал принципы «управленческой динамики». Первые концепции теории игр анализировали антагонистические игры, когда есть проигравшие и выигравшие за их счет игроки. Нэш разрабатывает методы анализа, в которых все участники или выигрывают, или терпят поражение. Эти ситуации получили названия «равновесие по Нэшу», или «некооперативное равновесие», в ситуации стороны используют оптимальную стратегию, что и приводит к созданию устойчивого равновесия. Игрокам выгодно сохранять это равновесие, так как любое изменение ухудшит их положение. Эти работы Нэша сделали серьезный вклад в развитие теории игр, были пересмотрены математические инструменты экономического моделирования. Джон Нэш показывает, что классический подход к конкуренции А.Смита, когда каждый сам за себя, неоптимален. Более оптимальны стратегии, когда каждый старается сделать лучше для себя, делая лучше для других. В 1949 году Джон Нэш пишет диссертацию по теории игр, через 45 лет он получает Нобелевскую премию по экономике.

13 стр., 6211 слов

Теория макроэкономического равновесия

... Основная цель работы заключается в изучении теории макроэкономического равновесия. Для достижения поставленной цели в работе решаются следующие задачи: Рассматривается понятие макроэкономического равновесия, частичное, общее и реальное равновесие; Изучается классическая теория макроэкономического равновесия; Раскрывается макроэкономическое равновесие в кейнсианской теории. Предметом исследования ...

Хотя теория игр первоначально и рассматривала экономические модели вплоть до 1950-х она оставалась формальной теорией в рамках математики. Но уже с 1950-х гг. начинаются попытки применить методы теории игр не только в экономике, но в биологии, кибернетике, технике, антропологии. Во время Второй мировой войны и сразу после нее теорией игр серьезно заинтересовались военные, которые увидели в ней мощный аппарат для исследования стратегических решений.

В 1960 — 1970 гг. интерес к теории игр угасает, несмотря на значительные математические результаты, полученные к тому времени. С середины 1980-х гг. начинается активное практическое использование теории игр, особенно в экономике и менеджменте. За последние 20 — 30 лет значение теории игр и интерес значительно растет, некоторые направления современной экономической теории невозможно изложить без применения теории игр.

Большим вкладом в применение теории игр стала работа Томаса Шеллинга, нобелевского лауреата по экономике 2005 г. «Стратегия конфликта». Т.Шеллинг рассматривает различные «стратегии» поведения участников конфликта. Эти стратегии совпадают с тактиками управления конфликтами и принципами анализа конфликтов в конфликтологии и в управлении конфликтами в организации.

Основные положения теории игр

Ознакомимся с основными понятиями теории игр. Математическая модель конфликтной ситуации называется игрой, стороны, участвующие в конфликте — игроками . Чтобы описать игру, необходимо сначала выявить ее участников (игроков).

Это условие легко выполнимо, когда речь идет об обычных играх типа шахмат и т.п. Иначе обстоит дело с «рыночными играми». Здесь не всегда просто распознать всех игроков, т.е. действующих или потенциальных конкурентов. Практика показывает, что не обязательно идентифицировать всех игроков, надо обнаружить наиболее важных. Игры охватывают, как правило, несколько периодов, в течение которых игроки предпринимают последовательные или одновременные действия. Выбор и осуществление одного из предусмотренных правилами действий называется ходом игрока. Ходы могут быть личными и случайными. Личный ход — это сознательный выбор игроком одного из возможных действий (например, ход в шахматной игре).

Случайный ход — это случайно выбранное действие (например, выбор карты из перетасованной колоды).

Действия могут быть связаны с ценами, объемами продаж, затратами на научные исследования и разработки и т.д. Периоды, в течение которых игроки делают свои ходы, называются этапами игры. Выбранные на каждом этапе ходы в конечном счете определяют «платежи» (выигрыш или убыток) каждого игрока, которые могут выражаться в материальных ценностях или деньгах. Еще одним понятием данной теории является стратегия игрока. Стратегией игрока называется совокупность правил, определяющих выбор его действия при каждом личном ходе в зависимости от сложившейся ситуации. Обычно в процессе игры при каждом личном ходе игрок делает выбор в зависимости от конкретной ситуации. Однако в принципе возможно, что все решения приняты игроком заранее (в ответ на любую сложившуюся ситуацию).

Это означает, что игрок выбрал определённую стратегию, которая может быть задана в виде списка правил или программы. (Так можно осуществить игру с помощью ЭВМ).

Иначе говоря, под стратегией понимаются возможные действия, позволяющие игроку на каждом этапе игры выбирать из определенного количества альтернативных вариантов такой ход, который представляется ему «лучшим ответом» на действия других игроков. Относительно концепции стратегии следует заметить, что игрок определяет свои действия не только для этапов, которых фактически достигла конкретная игра, но и для всех ситуаций, включая и те, которые могут и не возникнуть в ходе данной игры. Игра называется парной , если в ней участвуют два игрока, и множественной , если число игроков больше двух. Для каждой формализованной игры вводятся правила, т.е. система условий, определяющая: 1) варианты действий игроков; 2) объём информации каждого игрока о поведении партнёров; 3) выигрыш, к которому приводит каждая совокупность действий. Как правило, выигрыш (или проигрыш) может быть задан количественно; например, можно оценить проигрыш нулём, выигрыш — единицей, а ничью — ½. Игра называется игрой с нулевой суммой, или антагонистической, если выигрыш одного из игроков равен проигрышу другого, т. е. для полного задания игры достаточно указать величину одного из них.

Если обозначить а — выигрыш одного из игроков, b — выигрыш другого, то для игры с нулевой суммой b = -а, поэтому достаточно рассматривать, например а. Игра называется конечной, если у каждого игрока имеется конечное число стратегий, и бесконечной — в противном случае. Для того чтобы решить игру, или найти решение игры , следует для каждого игрока выбрать стратегию, которая удовлетворяет условию оптимальности, т.е. один из игроков должен получать максимальный выигрыш , когда второй придерживается своей стратегии. В то же время второй игрок должен иметь минимальный проигрыш , если первый придерживается своей стратегии. Такие стратегии называются оптимальными . Оптимальные стратегии должны также удовлетворять условию устойчивости , т. е. любому из игроков должно быть невыгодно отказаться от своей стратегии в этой игре. Если игра повторяется достаточно много раз, то игроков может интересовать не выигрыш и проигрыш в каждой конкретной партии, а средний выигрыш (проигрыш) во всех партиях. Целью теории игр является определение оптимальной стратегии для каждого игрока . При выборе оптимальной стратегии естественно предполагать, что оба игрока ведут себя разумно с точки зрения своих интересов.

Кооперативные и некооперативные

коалиционной

Часто предполагают, что кооперативные игры отличаются именно возможностью общения игроков друг с другом. В общем случае это неверно. Существуют игры, где коммуникация разрешена, но игроки преследуют личные цели, и наоборот.

Из двух типов игр, некооперативные описывают ситуации в мельчайших деталях и выдают более точные результаты. Кооперативные рассматривают процесс игры в целом.

Гибридные игры включают в себя элементы кооперативных и некооперативных игр. Например, игроки могут образовывать группы, но игра будет вестись в некооперативном стиле. Это значит, что каждый игрок будет преследовать интересы своей группы, вместе с тем стараясь достичь личной выгоды.

Симметричные и несимметричные

Несимметричная игра

Игра будет симметричной тогда, когда соответствующие стратегии у игроков будут равны, то есть иметь одинаковые платежи. Иначе говоря, если игроки могут поменяться местами и при этом их выигрыши за одни и те же ходы не изменятся. Многие изучаемые игры для двух игроков — симметричные. В частности, таковыми являются: «Дилемма заключённого», «Охота на оленя». В примере справа игра на первый взгляд может показаться симметричной из-за похожих стратегий, но это не так — ведь выигрыш второго игрока при профилях стратегий (А, А) и (Б, Б) будет больше, чем у первого.

С нулевой суммой и с ненулевой суммой

воровство

играх с ненулевой суммой

Ещё игрой с отличной от нуля суммой является торговля , где каждый участник извлекает выгоду. Сюда также относятся шашки и шахматы; в двух последних игрок может превратить свою рядовую фигуру в более сильную, получив преимущество. Во всех этих случаях сумма игры увеличивается. Широко известным примером, где она уменьшается, является война .

Параллельные и последовательные

В параллельных играх игроки ходят одновременно, или, по крайней мере, они не осведомлены о выборе других до тех пор, пока все не сделают свой ход. В последовательных, или динамических , играх участники могут делать ходы в заранее установленном либо случайном порядке, но при этом они получают некоторую информацию о предшествующих действиях других. Эта информация может быть даже не совсем полной , например, игрок может узнать, что его противник из десяти своих стратегий точно не выбрал пятую, ничего не узнав о других.

Различия в представлении параллельных и последовательных игр рассматривались выше. Первые обычно представляют в нормальной форме, а вторые — в экстенсивной.

С полной или неполной информацией

Дилеммы заключённого

Примеры игр с полной информацией: шахматы, шашки и другие.

совершенной информации

Игры с бесконечным числом шагов

Игры в реальном мире или изучаемые в экономике игры, как правило, длятся конечное число ходов. Математика не так ограничена, и в частности, в теории множеств рассматриваются игры, способные продолжаться бесконечно долго. Причём победитель и его выигрыш не определены до окончания всех ходов.

Задача, которая обычно ставится в этом случае, состоит не в поиске оптимального решения, а в поиске хотя бы выигрышной стратегии.

Дискретные и непрерывные игры

дискретны

Метаигры

Это такие игры, результатом которых является набор правил для другой игры (называемой целевой или игрой-объектом ).

Цель метаигр — увеличить полезность выдаваемого набора правил.

Форма представления игры

В теории игр наряду с классификацией игр огромную роль играет форма представления игры. Обычно выделяют нормальную, или матричную форму и развернутую, заданную в виде дерева. Эти формы для простой игры представлены на рис. 1а и 1б.

Чтобы установить первую связь со сферой управления, игру можно описать следующим образом. Два предприятия, производящие однородную продукцию, стоят перед выбором. В одном случае они могут закрепиться на рынке благодаря установлению высокой цены, которая обеспечит им среднюю картельную прибыль П K . При вступлении в жесткую конкурентную борьбу оба получают прибыль П W . Если один из конкурентов устанавливает высокую цену, а второй — низкую, то последний реализует монопольную прибыль П M , другой же несет убытки П G . Подобная ситуация может, например, возникнуть когда обе фирмы должны объявить свою цену, которая впоследствии не может быть пересмотрена.

При отсутствии жестких условий обоим предприятиям выгодно назначить низкую цену. Стратегия «низкой цены» является доминирующей для любой фирмы: вне зависимости от того, какую цену выбирает конкурирующая фирма, самой всегда предпочтительней устанавливать низкую цену. Но в таком случае перед фирмами возникает дилемма, так как прибыль П K (которая для обоих игроков выше, чем прибыль П W) не достигается.

Стратегическая комбинация «низкие цены/низкие цены» с соответствующими платежами представляет собой равновесие Нэша, при котором ни одному из игроков невыгодно сепаратно отходить от выбранной стратегии. Подобная концепция равновесия является принципиальной при разрешении стратегических ситуаций, но при определенных обстоятельствах она все же требует усовершенствования.

Что касается указанной выше дилеммы, то ее разрешение зависит, в частности, от оригинальности ходов игроков. Если предприятие имеет возможность пересмотреть свои стратегические переменные (в данном случае цену), то может быть найдено кооперативное решение проблемы даже без жесткого договора между игроками. Интуиция подсказывает, что при многократных контактах игроков появляются возможности добиться приемлемой «компенсации». Так, при известных обстоятельствах нецелесообразно стремиться к краткосрочным высоким прибылям путем ценового демпинга, если в дальнейшем может возникнуть «война цен».

Как отмечалось, оба рисунка характеризуют одну и ту же игру. Предоставление игры в нормальной форме в обычном случае отражает «синхронность». Однако это не означает «одновременность» событий, а указывает на то, что выбор стратегии игроком осуществляется в условиях неведения о выборе стратегии соперником. При развернутой форме такая ситуация выражается через овальное пространство (информационное поле).

При отсутствии этого пространства игровая ситуация приобретает иной характер: сначала решение должен бы принимать один игрок, а другой мог бы делать это вслед за ним.

Классическая задача в теории игр

Охота на оленя

» Если охотились на оленя, то каждый понимал, что для этого он обязан оставаться на своем посту; но если вблизи кого-либо из охотников пробегал заяц, то не приходилось сомневаться, что этот охотник без зазрения совести пустится за ним вдогонку и, настигнув добычу, весьма мало будет сокрушаться о том, что таким образом лишил добычи своих товарищей.»

Охота на оленя — классический пример задачи обеспечения общественного блага при искушении человека поддаться своекорыстию. Должен ли охотник остаться с товарищами и сделать ставку на менее благоприятный случай доставить крупную добычу всему племени, либо покинуть товарищей и вверить себя более надежному случаю, сулящему его собственной семье зайца?

Фундаментальная проблема в теории игр

Рассмотрим фундаментальную проблему в теории игр под названием Дилемма заключенного.

Дилемма заключённого

строго доминирует

Парето-оптимальному

В повторяющейся дилемме заключённого игра происходит периодически, и каждый игрок может «наказать» другого за несотрудничество ранее. В такой игре сотрудничество может стать равновесием, а стимул предать может перевешиваться угрозой наказания.

Классическая дилемма заключённого

Во всех судебных системах кара за бандитизм (совершение преступлений в составе организованной группы) намного тяжелее, чем за те же преступления, совершённые в одиночку (отсюда альтернативное название — «дилемма бандита»).

Классическая формулировка дилеммы заключённого такова:

Двое преступников, А и Б, попались примерно в одно и то же время на сходных преступлениях. Есть основания полагать, что они действовали по сговору, и полиция, изолировав их друг от друга, предлагает им одну и ту же сделку: если один свидетельствует против другого, а тот хранит молчание, то первый освобождается за помощь следствию, а второй получает максимальный срок лишения свободы (10 лет)(20 лет).

Если оба молчат, их деяние проходит по более лёгкой статье, и они приговариваются к 6 месяцам(1 год).

Если оба свидетельствуют против друг друга, они получают минимальный срок (по 2 года)(5 лет).

Каждый заключённый выбирает, молчать или свидетельствовать против другого. Однако ни один из них не знает точно, что сделает другой. Что произойдёт?

Игру можно представить в виде следующей таблицы:

Дилемма появляется, если предположить, что оба заботятся только о минимизации собственного срока заключения.

Представим рассуждения одного из заключённых. Если партнёр молчит, то лучше его предать и выйти на свободу (иначе — полгода тюрьмы).

Если партнёр свидетельствует, то лучше тоже свидетельствовать против него, чтобы получить 2 года (иначе — 10 лет).

Стратегия «свидетельствовать» строго доминирует над стратегией «молчать». Аналогично другой заключённый приходит к тому же выводу.

С точки зрения группы (этих двух заключённых) лучше всего сотрудничать друг с другом, хранить молчание и получить по полгода, так как это уменьшит суммарный срок заключения. Любое другое решение будет менее выгодным.

Обобщённая форма

  1. В игре — два игрока и банкир. Каждый игрок держит 2 карты: на одной написано «сотрудничать», на другой — «предать» (это стандартная терминология игры).

    Каждый игрок кладёт одну карту перед банкиром лицом вниз (то есть никто не знает чужого решения, хотя знание чужого решения не влияет на анализ доминирования).

    Банкир открывает карты и выдаёт выигрыш.

  2. Если оба выбрали «сотрудничать», оба получают C . Если один выбрал «предать», другой «сотрудничать» — первый получает D , второй с . Если оба выбрали «предать» — оба получают d .
  3. Значения переменных C, D, c, d могут быть любого знака (в примере выше все меньше либо равны 0).

    Обязательно должно соблюдаться неравенство D > C > d > c, чтобы игра представляла собой «Дилемму заключённого» (ДЗ).

  4. Если игра повторяется, то есть играется больше 1 раза подряд, общий выигрыш от сотрудничества должен быть больше суммарного выигрыша в ситуации, когда один предаёт, а другой — нет, то есть 2C > D + c.

Эти правила были установлены Дугласом Хофштадтером и образуют каноническое описание типичной дилеммы заключённого.

Похожая, но другая игра

обмен закрытыми сумками

Два человека встречаются и обмениваются закрытыми сумками, понимая, что одна из них содержит деньги, другая — товар. Каждый игрок может уважать сделку и положить в сумку то, о чём договорились, либо обмануть партнёра, дав пустую сумку.

В этой игре обман всегда будет наилучшим решением, означая также, что рациональные игроки никогда не будут играть в неё, и что рынок обмена закрытыми сумками будет отсутствовать.

Применение теории игр для принятия стратегических управленческих решений

В качестве примеров можно назвать решения по поводу проведения принципиальной ценовой политики, вступления на новые рынки, кооперации и создания совместных предприятий, определения лидеров и исполнителей в области инноваций, вертикальной интеграции и т.д. Положения теории игр в принципе можно использовать для всех видов решений, если на их принятие влияют другие действующие лица. Этими лицами, или игроками, необязательно должны быть рыночные конкуренты; в их роли могут выступать субпоставщики, ведущие клиенты, сотрудники организаций, а также коллеги по работе.

в области платежей

 Квадранты 1 и 2 характеризуют ситуацию, когда реакция конкурентов не оказывает существенного влияния на платежи фирмы. Это происходит в тех случаях, когда у конкурента нет мотивации (поле 1 ) или возможности (поле 2 ) нанести «ответный удар». Поэтому нет необходимости в детальном анализе стратегии мотивированных действий конкурентов.

Аналогичный вывод следует, хотя и по другой причине, и для ситуации, отражаемой квадрантом 3 . Здесь реакция конкурентов могла бы изрядно воздействовать на фирму, но поскольку ее собственные действия не могут сильно повлиять на платежи конкурента, то и не следует опасаться его реакции. В качестве примера можно привести решения о вхождении в рыночную нишу: при определенных обстоятельствах у крупных конкурентов нет оснований реагировать на подобное решение небольшой фирмы.

Лишь ситуация, показанная в квадранте 4 (возможность ответных шагов рыночных партнеров), требует использования положений теории игр. Однако здесь отражены лишь необходимые, но недостаточные условия, чтобы оправдать применение базы теории игр для борьбы с конкурентами. Бывают ситуации, когда одна стратегия безусловно доминирует над всеми другими независимо от того, какие действия предпримет конкурент. Если взять, например, рынок лекарственных препаратов, то для фирмы часто бывает важно первой заявить новый товар на рынке: прибыль «первопроходца» оказывается столь значительной, что всем другим «игрокам» остается только быстрее активизировать инновационную деятельность.

проникновения на новый рынок.

 Та же самая игровая ситуация может быть представлена и в нормальной форме (рис.4).

Здесь обозначены два состояния — «вступление/дружественная реакция» и «невступление/ агрессивная реакция». Очевидно, что второе равновесие несостоятельно. Из развернутой формы следует, что для уже закрепившейся на рынке компании нецелесообразно реагировать агрессивно на появление нового конкурента: при агрессивном поведении теперешний монополист получает 1(платеж), а при дружественном — 3. Компания-аутсайдер к тому же знает, что для монополиста не рационально начинать действия по ее вытеснению, и поэтому она принимает решение о вступлении на рынок. Грозившие потери в размере (-1) компания-аутсайдер не понесет.

Подобное рациональное равновесие характерно для «частично усовершенствованной» игры, которая заведомо исключает абсурдные ходы. Такие равновесные состояния на практике в принципе довольно просто найти. Равновесные конфигурации могут быть выявлены с помощью специального алгоритма из области исследования операций для любой конечной игры. Игрок, принимающий решение, поступает следующим образом: вначале делается выбор «лучшего» хода на последнем этапе игры, затем выбирается «лучший» ход на предшествующем этапе с учетом выбора на последнем этапе и так далее, до тех пор пока не будет достигнут начальный узел дерева игры.

Какую пользу могут извлечь компании из анализа на базе теории игр? Известен, например, случай столкновения интересов компаний IВМ и Telex. В связи с объявлением о подготовительных планах последней к вступлению на рынок состоялось «кризисное» совещание руководства IВМ, на котором были проанализированы мероприятия, направленные на то, чтобы заставить нового конкурента отказаться от намерения проникнуть на новый рынок. Компании Telex, видимо, стало известно об этих мероприятиях. Анализ на базе теории игр показал, что угрозы IВМ из-за высоких затрат безосновательны. Это свидетельствует, что компаниям полезно в обдумывать возможные реакции партнеров по игре. Изолированные хозяйственные расчеты, даже опирающиеся на теорию принятия решений, часто носят, как в изложенной ситуации, ограниченный характер. Так, компания-аутсайдер могла бы и выбрать ход «невступление», если бы предварительный анализ убедил ее в том, что проникновение на рынок вызовет агрессивную реакцию монополиста. В этом случае в соответствии с критерием ожидаемой стоимости разумно выбрать ход «невступление» при вероятности агрессивного ответа 0,5.

технологического лидерства.

Для предприятия 1 лучше всего было бы, если бы предприятие 2 отказалось от конкуренции. Его выгода в таком случае составила бы 3 (платежа).

С большой вероятностью предприятие 2 выиграло бы соперничество, когда предприятие 1 приняло бы урезанную программу инвестиций, а предприятие 2 — более широкую. Это положение отражено в правом верхнем квадранте матрицы.

Анализ ситуации показывает, что равновесие наступает при высоких затратах на НИР предприятия 2 и низких предприятия 1 . При любом другом раскладе у одного из конкурентов появляется резон отклониться от стратегической комбинации: так, для предприятия 1 предпочтителен сокращенный бюджет, если предприятие 2 откажется от участия в соперничестве; в то же время предприятию 2 известно, что при низких затратах конкурента ему выгодно инвестировать в НИР.

Предприятие, имеющее технологическое преимущество, может прибегнуть к анализу ситуации на базе теории игр, чтобы в конечном счете добиться оптимального для себя результата. С помощью определенного сигнала оно должно показать, что готово осуществить крупные затраты на НИР. Если такой сигнал не поступил, то для предприятия 2 ясно, что предприятие 1 выбирает вариант низких затрат.

О достоверности сигнала должны свидетельствовать обязательства предприятия. В данном случае это может быть решение предприятия 1 о закупке новых лабораторий или найме на работу дополнительного научно-исследовательского персонала.

С точки зрения теории игр подобные обязательства равнозначны изменению хода игры: ситуация одновременного принятия решений сменяется ситуацией последовательных ходов. Предприятие 1 твердо демонстрирует намерение пойти на крупные затраты, предприятие 2 регистрирует этот шаг и у него нет больше резона участвовать в соперничестве. Новое равновесие вытекает из расклада «неучастие предприятия 2 » и «высокие затраты на НИР предприятия 1 «.

ценовую стратегию, создание совместных предприятий, расчет времени разработки новой продукции.

экспериментальные работы

Эти знания можно использовать в практике предприятий, чтобы помочь двум фирмам достичь ситуации «выигрыш/выигрыш». Сегодня консультанты с подготовкой в области игр быстро и однозначно выявляют возможности, которыми предприятия могут воспользоваться для заключения стабильных и долгосрочных договоров с клиентами, субпоставщиками, партнерами по разработкам и т.п.

Проблемы практического применения в управлении

Безусловно, следует указать и на наличие определенных границ применения аналитического инструментария теории игр. В следующих случаях он может быть использован лишь при условии получения дополнительной информации.

Во-первых,, Во-вторых,, В-третьих,

Экспериментально доказано, что при расширении игры до десяти и более этапов игроки уже не в состоянии пользоваться соответствующими алгоритмами и продолжать игру с равновесными стратегиями.

Теория игр используется не так часто. К сожалению, ситуации реального мира зачастую очень сложны и настолько быстро изменяются, что невозможно точно спрогнозировать, как отреагируют конкуренты на изменение тактики фирмы. Тем не менее, теория игр полезна, когда требуется определить наиболее важные и требующие учета факторы в ситуации принятия решений в условиях конкурентной борьбы. Эта информация важна, поскольку позволяет руководству учесть дополнительные переменные или факторы, могущие повлиять на ситуацию, и тем самым повышает эффективность решения.

В заключение следует особо подчеркнуть, что теория игр является очень сложной областью знания. При обращении к ней надо соблюдать известную осторожность и четко знать границы применения. Слишком простые толкования, принимаемые фирмой самостоятельно или с помощью консультантов, таят в себе скрытую опасность. Анализ и консультации на основе теории игр из-за их сложности рекомендуются лишь для особо важных проблемных областей. Опыт фирм показывает, что использование соответствующего инструментария предпочтительно при принятии однократных, принципиально важных плановых стратегических решений, в том числе при подготовке крупных кооперационных договоров.

Список литературы

1. Теория игр и экономическое поведение, фон Нейман Дж., Моргенштерн О., изд-во Наука, 1970

2. Петросян Л.А., Зенкевич Н.А., Семина Е.А. Теория игр: Учеб. пособие для ун-тов — М.: Высш. шк., Книжный дом «Университет», 1998

3. Дубина И. Н. Основы теории экономических игр: учебное пособие.- М.: КНОРУС, 2010

4. Архив журнала «Проблемы Теории и Практики Управления»., Райнер Фелькер

Теория игр в управлении организационными системами. 2-е издание .,

Ж. Ж. Руссо.

В практической деятельности часто приходится принимать решения в условиях противодействия другой стороны, которая может преследовать противоположные или иные цели, препятствовать теми или иными действиями или состояниями внешней среды достижению намеченной цели. Причем, эти воздействия противоположной стороны могут носить пассивный или активный характер. В таких случаях приходится учитывать возможные варианты поведения противоположной стороны, ответные действия и их возможные последствия.

которую называют игрой

такую игру называют

называются конфликтными

В экономике конфликтные ситуации встречаются очень часто и имеют многообразный характер. К ним относятся, например, взаимоотношения между поставщиком и потребителем, покупателем и продавцом, банком и клиентом и т. д. Во всех этих примерах конфликтная ситуация порождается различием интересов партнеров и стремлением каждого из них принимать оптимальные решения. При этом каждому приходится считаться не только со своими целями, но и с целями партнера и учитывать неизвестные заранее его возможные действия.

теории игр.

Теория игр

Конфликтующие стороны называются игроками , одна реализация игры – партией , исход игры – выигрышем или проигрышем . Любое возможное для игрока действие (в рамках заданных правил игры) называется его стратегией .

Смысл игры состоит в том, что каждый из игроков в рамках заданных правил игры стремится применить оптимальную для него стратегию, то есть стратегию, которая приведет к наилучшему для него исходу. Одним из принципов оптимального (целесообразного) поведения является достижение равновесной ситуации, в нарушении которой не заинтересован ни один из игроков.

Именно ситуация равновесия может быть предметом устойчивых договоров между игроками. Кроме того, ситуации равновесия являются выгодными для каждого игрока: в равновесной ситуации каждый игрок получает наибольший выигрыш, в той мере, в какой это от него зависит.

называется игрой

Для каждой формализованной игры вводятся правила. В общем случае правилами игры устанавливаются варианты действий игроков; объем информации каждого игрока о поведении партнеров; выигрыш, к которому приводит каждая совокупность действий.

Ходом в теории игр называют

В зависимости от причин, вызывающих неопределенность исходов, игры можно разделить на следующие основные группы:

Комбинированные игры,, Азартные игры, Стратегические игры

Существуют игры, сочетающие в себе свойства комбинированных и азартных игр, стратегичность игр может сочетаться с комбинаторностью и т. д.

подразделяются на парные и множественные.

Стратегией игрока, Оптимальной

Игра называется конечной , если число стратегий игроков конечно, и бесконечной , если хотя бы у одного из игроков число стратегий является бесконечным.

В многоходовых задачах теории игр понятия «стратегия» и «вариант возможных действий» существенно отличаются друг от друга. В простых (одноходовых) игровых задачах, когда в каждой партии игры каждый игрок может сделать по одному ходу, эти понятия совпадают, а, следовательно, совокупность стратегий игрока охватывает все возможные действия, которые он может предпринять в любой возможной ситуации и при любой возможной фактической информации.

игрой с нулевой

играми с ненулевой суммой

позиционный и нормальный

Использование математических методов, к числу которых относится теория игр, в анализе экономических процессов позволяет выявить такие тенденции, взаимосвязи, которые остаются скрытыми при применении других методов.

В экономической действительности на каждом шагу встречаются ситуации, когда отдельные люди, фирмы или целые страны пытаются обойти друг друга в борьбе за первенство. Такими ситуациями и занимается ветвь экономического анализа, называемая «теория игр».

«Теория игр изучает то, каким образом двое или более игроков выбирают отдельные действия или целые стратегии. Название этой теории настраивает на несколько отвлеченный лад, поскольку оно ассоциируется с игрой в шахматы и бридж или с ведением войн. На самом деле выводы этой дисциплины весьма глубоки. Теория игр была разработана выходцем из Венгрии, гениальным математиком Джоном фон Нейманом (1903-1957).

Эта теория сравнительно молодая математическая дисциплина.

В дальнейшем теория игр была дополнена такими разработками, как равновесие Нэша (по имени математика Джона Нэша).

Равновесие по Нэшу возникает, когда ни один из игроков не может улучшить своего положения, если его противники не изменят своих стратегий. Стратегия каждого игрока является лучшим ответом на стратегию его противника. Иногда равновесие по Нэшу называют также некооперативным равновесием, поскольку участники совершают свой выбор, не вступая ни в какие соглашения друг с другом и не принимая во внимание никаких других соображений (интересы общества или интересы других сторон), кроме собственной выгоды.

Равновесие совершенно конкурентного рынка также является равновесием по Нэшу, или некооперативным равновесием, при котором каждая фирма и каждый потребитель принимают решения исходя из уже существующих цен как не зависящих от его воли. Мы уже знаем, что в условиях, когда каждая фирма стремится максимизировать прибыль, а каждый потребитель — полезность, равновесие возникает, когда цены равны предельным издержкам, а прибыль — нулю. » Мамаева Л.Н. Институциональная экономика: Курс лекций — М.: Издательско-торговая корпорация «Дашков и К», 2012. — 200 с.

Вспомним концепцию «невидимой руки» Адама Смита: «Преследуя собственные интересы, он (индивид) часто в большей степени способствует процветанию общества, чем если бы он к этому сознательно стремился» Смит А. Исследование о природе и причинах богатства народов // Антология экономической классики. — М.: Эконов-ключ, 19931. Парадокс «невидимой руки» заключается в том, что, хотя каждый и действует как самостоятельная сила, в конечном итоге общество остается в выигрыше. При этом конкурентное равновесие является равновесием по Нэшу еще и в том смысле, что ни у кого нет повода изменять свою стратегию, если и все остальные придерживаются своей. В условиях совершенно конкурентной экономики некооперативное поведение является экономически эффективным с точки зрения интересов общества.

Напротив, когда члены некоторой группы решают кооперироваться и совместно прийти к монопольной цене, такое поведение нанесет ущерб экономической эффективности. Государство вынуждено создавать антимонопольное законодательство и тем самым урезонивать тех, кто пытается завысить цены и поделить рынок. Однако не всегда разобщенность в поведении является экономически эффективной. Соперничество между фирмами ведет к низким ценам и конкурентному объему производства. «Невидимая рука» оказывает почти волшебное воздействие на совершенно конкурентные рынки: эффективное распределение ресурсов происходит в результате действий индивидов, стремящихся к максимизации прибыли.

Однако во многих случаях некооперативное поведение приводит к экономической неэффективности или даже представляет угрозу для общества (например, гонка вооружений).

Некооперативное поведение как со стороны США, так и со стороны СССР заставляло обе стороны вкладывать огромные средства в военную область и привело к созданию арсенала, состоящего из почти 100000 ядерных боеголовок. Существует также опасение, что чрезмерная доступность оружия в Америке может стать причиной своего рода внутренней гонки вооружений. Одни люди вооружают себя против других — и этот «бег наперегонки» может продолжаться до бесконечности. Здесь в действие вступает вполне «видимая рука», направляющая это разрушительное состязание и не имеющая ничего общего с «невидимой рукой» Адама Смита. Еще один важный экономический пример — «игры в загрязнения» (окружающей среды).

Здесь объектом нашего внимания станет такой вид побочных эффектов, как загрязнение. Если бы фирмы никогда и никого не спрашивали о том, как им поступить, любая из них скорее предпочла бы создавать загрязнения, чем устанавливать дорогостоящие очистители. Если же какая-нибудь фирма из благородных побуждений решилась бы уменьшить вредные выбросы, то издержки, а следовательно, и цены на ее продукцию, возросли бы, а спрос упал. Вполне возможно, эта фирма просто обанкротилась бы. Живущие в жестоком мире естественного отбора, фирмы скорее предпочтут оставаться в условиях равновесия по Нэшу Ни одной фирме не удастся повысить прибыль, уменьшая загрязнение.

Вступив в смертоносную экономическую игру, каждая неконтролируемая государством и максимизирующая прибыль сталелитейная фирма будет производить загрязнения воды и воздуха. Если какая-либо фирма попытается очищать свои выбросы, то тем самым она будет вынуждена повысить цены и потерпеть убытки. Некооперативное поведение установит равновесие по Нэшу в условиях высоких выбросов. Правительство может предпринять меры, с тем чтобы равновесие переместилось. В этом положении загрязнение будет незначительным, прибыли же останутся теми же. Мамаева Л.Н. Институциональная экономика: Курс лекций — М.: Издательско-торговая корпорация «Дашков и К», 2012. — 203 с.

Игры в загрязнения — один из случаев того, как механизм действия «невидимой руки» не срабатывает. Это ситуация, когда равновесие по Нэшу неэффективно. Иногда подобные неконтролируемые игры становятся угрожающими, и здесь может вмешаться правительство. Установив систему штрафов и квот на выбросы, правительство может побудить фирмы выбрать исход, соответствующий низкому уровню загрязнения. Фирмы зарабатывают ровно столько же, сколько и прежде, при больших выбросах, мир же становится несколько чище.

Теория игр применима и к макроэкономической политике. Экономисты и политики в США часто поругивают существующую денежно-кредитную и налогово-бюджетную политику: дефицит федерального бюджета слишком велик и уменьшает национальные сбережения, тогда как кредитно-денежная политика порождает такие процентные ставки, которые ограничивают инвестиции. Более того, этот «бюджетно-денежный синдром» является свойством макроэкономического «ландшафта» уже более десяти лет. Почему же Америка так упорно проводит оба вида политики, хотя ни один из них нежелателен?

Можно попытаться объяснить этот синдром с точки зрения теории игр. Стало привычным в современной экономике разделять данные разновидности политики. Центральный банк Америки — Федеральная резервная система — определяет независимо от правительства денежно-кредитную политику, назначая процентные ставки. Налогово-бюджетной политикой, налогами и расходами — заведуют законодательные и исполнительные власти. Однако каждый из этих видов политики имеет разные цели. Центральный банк стремится ограничить рост предложения денег и обеспечить низкие темпы инфляции.

Артур Берне, специалист по экономическим циклам и бывший глава ФРС, писал: «Чиновники центрального банка склонны, в силу традиции, а возможно, и в силу личного склада, держать цены в узде. Их ненависть к инфляции еще более разгорается после общения с единомышленниками из частных финансовых кругов». Власти же, заведующие налогово-бюджетной политикой, больше озабочены такими вопросами, как полная занятость, собственная популярность, сохранение низких налогов и грядущие выборы.

Лица, проводящие налогово-бюджетную политику, предпочитают минимально возможную величину безработицы, увеличение государственных расходов в сочетании с понижением налогов и не заботятся об инфляции и частных инвестициях.

В бюджетно-денежной игре кооперативная стратегия приводит к умеренной инфляции и безработице в сочетании с большим объемом инвестиций, стимулирующим экономический рост. Однако желание уменьшить безработицу и реализовать социальные программы побуждает руководство страны прибегать к увеличению бюджетного дефицита, тогда как неприятие инфляции заставляет центральный банк поднимать процентные ставки. Некооперативное равновесие означает наименьший возможный объем инвестиций.

Они выбирают «большой бюджетный дефицит». С другой стороны, центральный банк пытается уменьшить инфляцию, не подвержен влиянию профсоюзов и лоббирующих группировок и выбирает «высокие процентные ставки». Результатом является некооперативное равновесие с умеренными величинами инфляции и безработицы, но с низким уровнем инвестиций.

Возможно, что именно благодаря «бюджетно-денежной игре» президент Клинтон выдвинул экономическую программу по уменьшению бюджетного дефицита, снижению процентных ставок и расширению объема инвестиций.

игрой в нормальной форме.

Нормальная форма игры двух участников

Если игроку неизвестны какие-либо варианты стратегий противника (элементы матрицы), то игра называется неопределенной и может иметь бесконечное число вариантов (стратегий).

Существуют и другие классы игр, где игроки выигрывают и проигрывают одновременно.

Антагонистические игры двух лиц

В качестве примера рассмотрим игру, в которой участвуют два игрока, каждый из них имеет по две стратегии. Выигрыши каждого из игроков определяются такими правилами: если оба игрока выбирают стратегии с одинаковыми номерами (игрок I — , игрок II -), то первый игрок выигрывает, а второй проигрывает (государство повышает налоги — бизнес платит их, т.е. выигрыш государства определяет проигрыш бизнеса); если оба игрока выбирают разные стратегии (игрок I — і 1 игрок II — j 2 то первый проигрывает, а второй выигрывает (государство повышает налоги на бизнес — бизнес уклоняется от них; проигрыш государства — выигрыш бизнеса).

Теория игр есть теория математических моделей таких явлений, в которых участники («игроки») имеют различные интересы и располагают для достижения своих целей более или менее свободно выбираемыми путями (стратегиями).

В большинстве работ по теории игр предполагается, что интересы участников игры поддаются количественному измерению и являются вещественными функциями ситуаций, т.е. набором стратегий, получаемых при выборе каждым из игроков некоторой своей стратегии. Для получения результатов необходимо рассматривать те или иные классы игр, выделенные некоторыми ограничительными предположениями. Такие ограничения можно накладывать несколькими путями.

несколько способов (путей) наложения ограничений.

1. Ограничения возможностей взаимоотношений игроков между собой. Простейшим случаем является такой, когда игроки действуют совершенно разобщено и не могут сознательно помогать или мешать друг другу действием или бездействием, информацией или дезинформацией. Такое положение дел неизбежно наступает, когда в игре участвуют только два игрока (государство и бизнес), имеющие диаметрально противоположные интересы: увеличение выигрыша одного из них означает уменьшение выигрыша другого, и притом на ту же сумму, при условии, что выигрыши обоих игроков выражаются в одинаковых единицах измерения. Не нарушая общности, можно принять суммарный выигрыш обоих игроков равным нулю и трактовать выигрыш одного из них как проигрыш другого.

Эти игры называют антагонистическими (или играми с нулевой суммой, или нулевыми играми двух лиц).

Они предполагают, что никаких взаимоотношений между игроками, никаких компромиссов, обменов информацией и другими ресурсами не может быть по самой своей природе вещей, по сути игры, поскольку каждое сообщение, получаемое игроком о намерениях другого, может лишь увеличить выигрыш первого игрока и тем самым увеличить проигрыш его противника.

Таким образом, сделаем вывод, что в антагонистических играх игрокам можно не иметь непосредственных взаимоотношений и вместе с тем находиться в состоянии игры (противостоянии) по отношению друг к другу.

2. Ограничения или упрощающие предположения на множестве стратегий игроков. В наиболее простом случае эти множества стратегий конечны, что устраняет ситуации, связанные с возможными совпадениями (сходимостями) в множествах стратегий, избавляет от необходимости вводить на множествах какую-либо технологию.

конечными играми.

3. Предложения о внутреннем строении каждой стратегии, т.е. о ее содержании. Так, например, в качестве стратегий можно рассматривать функции времени (непрерывного или дискретного), значениями которых являются действия игрока в соответствующий момент. Эти и подобные им игры принято называть динамическими (позиционными).

Ограничениями стратегий игроков могут быть и их целевые функции, т.е. определение тех целей, на реализацию которых направлена та или иная стратегия. Можно предположить, что ограничения на стратегию связаны и со способами достижения этих целей в тех или иных временных интервалах, например стремление бизнеса добиться снижения размеров обязательных продаж валютной выручки в течение ближайших трех месяцев (или одного года).

Если же предположений о природе стратегий не делается, то они считаются некоторым абстрактным множеством. Такого рода игры в самой простой постановке вопроса называются играми в нормальной форме.

матричными.

Матрицу, имеющую m строк и n столбцов, называют (m*n) — матрицей, а игру с этой матрицей — (m*n) — игрой.

Процесс (m*n) — игры с матрицей можно представить следующим образом:

Игрок I фиксирует номер строки i, а игрок II — номер столбца j, после чего первый игрок получает от своего противника сумму

Целью игрока I в матричной игре является получение максимального выигрыша, цель игрока II состоит в том, чтобы дать игроку I минимальный выигрыш.

Пусть игрок I (государство) выбирает некоторую свою стратегию i. Тогда в наихудшем случае он получит выигрыш min . В теории игр игроки предполагаются осторожными, рассчитывающими на наименее благоприятный для себя поворот событий.

Такое наименее благоприятное для игрока I положение дел может наступить, например, в том случае, когда стратегия i станет известной игроку II (бизнес).

Предвидя такую возможность, игрок I должен выбирать свою стратегию так, чтобы максимизировать этот минимальный выигрыш:

min = max min (I)

Значение, стоящее в правой части равенства, является гарантированным выигрышем игрока I. Игрок II (бизнес) должен выбрать такую стратегию, что

max = min max (II)

Значение, стоящее в правой части равенства, является выигрышем игрока I, больше которого он при правильных действиях противника получить не может.

вполне определенными.

смешанной стра

В основе теории матричных игр лежит теорема Неймана активных стратегиях: «Если один из игроков придерживается своей оптимальной стратегии, то выигрыш остается неизменным и равным цене игры независимо от того, что делает другой игрок, если он не выходит за пределы своих активных стратегий (т.е. пользуется любой из них в чистом виде или смешивает их в любых пропорциях» Neumann J. Contributions to the theory of games. 1995.. — 155 с.).

Отметим, что активной называется чистая стратегия игрока, входящая в его оптимальную смешанную стратегию с отличной от нуля вероятностью.

Главная цель игры —

Основная теорема о матричных играх устанавливает существование значения игры и оптимальных смешанных стратегий для обоих игроков. Оптимальная стратегия не обязана быть единичной. Это очень важный вывод, полученный на основе теории игр.

следующие

интерпретируются

каждый из игроков применяет к этим элементам функцию полезности;

колокольни».

предположения

Обобщение теории игр, имеющее целью включение в нее других возможностей анализа, приводит к интересным, но достаточно трудным задачам. При развитии теории игр необходимо применять функцию полезности не только к денежным исходам, но и к суммам с ожидаемыми будущими исходами. Эти предположения являются спорными, но они существуют. В данном случае мы исходим из того, что это предположение о подобной операции имеет сходство с поведением игроков в определенных ситуациях принятия решений и допускает возможность, что способ ведения игры данным игроком зависит от состояния его капитала во время ведения им игры.

примере. Пусть

Эти несколько примеров иллюстрируют только часть огромного разнообразия результатов, которые можно получить, используя теорию игр. Данный раздел экономической теории является чрезвычайно полезным (для экономистов и других представителей общественных наук) инструментом анализа ситуаций, при которых небольшое число людей хорошо информировано и пытается перехитрить друг друга на рынках, в сфере политики или в военных действиях.