Статистические методы

Реферат

1. Определение термина «статистика» и история ее возникновения

Статистика — это точная наука, изучающая методы сбора, анализа и обработки данных, которые описывают массовые действия, явления и процессы. Данные, изучаемые в статистике, затрагивают не отдельные объекты, а их совокупности. Главным методом сбора данных для статистики является полное обследование объектов, имеющих отношение к изучаемой проблеме.

Статистика — отрасль знаний, в которой излагаются общие вопросы сбора, измерения и анализа массовых статистических (количественных или качественных) данных.

Слово «статистика» происходит от латинского status — состояние дел. В науку термин «статистика» ввел немецкий ученый Готфрид Ахенваль в 1746 году, предложив заменить название курса «Государствоведение», преподававшегося в университетах Германии, на «Статистику», положив тем самым начало развитию статистики как науки и учебной дисциплины. Несмотря на это, статистический учет вёлся намного раньше: проводились переписи населения в Древнем Китае, осуществлялось сравнение военного потенциала государств, велся учет имущества граждан в Древнем Риме и т. п.

Статистика разрабатывает специальную методологию исследования и обработки материалов: массовые статистические наблюдения, метод группировок, средних величин, индексов, балансовый метод, метод графических изображений и другие методы анализа статистических данных.

Начало статистической практики относится примерно ко времени возникновения государства. Первой опубликованной статистической информацией можно считать глиняные таблички Шумерского царства (III — II тысячелетия до н. э.).

Вначале под статистикой понимали описание экономического и политического состояния государства или его части. Например, к 1792 г. относится определение: «статистика описывает состояние государства в настоящее время или в некоторый известный момент в прошлом». И в настоящее время деятельность государственных статистических служб вполне укладывается в это определение.

Постепенно термин «статистика» стал использоваться более широко. В XX веке статистику часто рассматривают прежде всего как самостоятельную научную дисциплину. Статистика есть совокупность методов и принципов, согласно которым проводится сбор, анализ, сравнение, представление и интерпретация числовых данных. В 1954 г. академик АН УССР Б. В. Гнеденко дал следующее определение: «Статистика состоит из трёх разделов:

11 стр., 5190 слов

Сравнительный анализ методов экономической оценки инвестиций

... анализ метод оценка инвестиция ГЛАВА 1. ЭКОНОМИЧЕСКАЯ ОЦЕНКА ИНВЕСТИЦИЙ Термин «инвестиции» происходит от латинского слова invest — вкладывать (некоторые авторы считают, что слово «инвестиции» происходит от латинского investire — облагать). В наиболее широкой трактовке инвестиции ... ее определения ... данным проектом. И t — инвестиции (оттоки) по шагам расчетного периода; И 0 — единовременные инвестиции ...

. сбор статистических сведений, то есть сведений, характеризующих отдельные единицы каких-либо массовых совокупностей;

. статистическое исследование полученных данных, заключающееся в выяснении тех закономерностей, которые могут быть установлены на основе данных массового наблюдения;

. разработка приёмов статистического наблюдения и анализа статистических данных. Последний раздел, собственно, и составляет содержание математической статистики».

Термин «статистика» употребляют ещё в двух смыслах. Во-первых, в обиходе под «статистикой» часто понимают набор количественных данных о каком-либо явлении или процессе. Во-вторых, статистикой называют функцию от результатов наблюдений, используемую для оценки характеристик и параметров распределений и проверки гипотез.

Типовые примеры раннего этапа применения статистических методов описаны в Библии, в Ветхом Завете. Там, в частности, приводится число воинов в различных племенах. С математической точки зрения дело сводилось к подсчёту числа попаданий значений наблюдаемых признаков в определённые градации.

Сразу после возникновения теории вероятностей (Паскаль, Ферма, XVII век) вероятностные модели стали использоваться при обработке статистических данных. Например, изучалась частота рождения мальчиков и девочек, было установлено отличие вероятности рождения мальчика от 0.5, анализировались причины того, что в парижских приютах эта вероятность не та, что в самом Париже, и т. д.

В 1794 г. (по другим данным — в 1795 г.) немецкий математик Карл Гаусс формализовал один из методов современной математической статистики — метод наименьших квадратов. В XIX веке заметный вклад в развитие практической статистики внёс бельгиец Кетле, на основе анализа большого числа реальных данных показавший устойчивость относительных статистических показателей, таких, как доля самоубийств среди всех смертей.

Первая треть ХХ века прошла под знаком параметрической статистики. Изучались методы, основанные на анализе данных из параметрических семейств распределений, описываемых кривыми семейства Пирсона. Наиболее популярным было нормальное распределение. Для проверки гипотез использовались критерии Пирсона, Стьюдента, Фишера. Были предложены метод максимального правдоподобия, дисперсионный анализ, сформулированы основные идеи планирования эксперимента.

Разработанную в первой трети ХХ века теорию анализа данных называют параметрической статистикой, поскольку её основной объект изучения — это выборки из распределений, описываемых одним или небольшим числом параметров. Наиболее общим является семейство кривых Пирсона, задаваемых четырьмя параметрами. Как правило, нельзя указать каких-либо веских причин, по которым распределение результатов конкретных наблюдений должно входить в то или иное параметрическое семейство. Исключения хорошо известны: если вероятностная модель предусматривает суммирование независимых случайных величин, то сумму естественно описывать нормальным распределением; если же в модели рассматривается произведение таких величин, то итог, видимо, приближается логарифмически нормальным распределением и так далее.

4 стр., 1713 слов

Организация статистики в Российской Федерации

... Федеральной службы государственной статистики. 1. Организация государственной статистики в России Организация статистического учета на государственном уровне необходима для решения задач информационного обеспечения общества, управления социально-экономическими и демографическими явлениями и процессами в ...

В настоящее время термин статистика употребляется в 4 значениях:

. наука, изучающая количественную сторону массовых явлений и процессов в неразрывной связи с их качественным содержанием — учебный предмет в высших и средних специальных учебных заведений;

. совокупность цифровых сведений, характеризующих состояние массовых явлений и процессов общественной жизни; статистические данные, представляемые в отчетности предприятий, организаций, отраслей экономики, а также публикуемых в сборниках, справочниках, периодической печати и в сети Интернет, которые являются результатом статистической работы;

. отрасль практической деятельности («статистический учет») по сбору, обработке, анализу и публикации массовых цифровых данных о самых различных явлениях и процессах общественной жизни;

. некий параметр ряда случайных величин, получаемый по определенному алгоритму из результатов наблюдений, например, статистические критерии (критические статистики), применяющиеся при проверке различных гипотез (предположительных утверждений) относительно природы или значений отдельных показателей исследуемых данных, особенностей их распределения и пр.

2. Описание научных подходов и методов статистики

Как и любая другая наука, статистика имеет свой предмет и метод исследования. Статистика изучает количественную сторону массовых общественных явлений в неразрывной связи с их качественной стороной или содержанием, а также исследует количественное выражение закономерностей общественного развития в конкретных условиях места и времени. Такое изучение основывается на системе категорий (понятий), отражающих наиболее общие и существенные свойства, признаки, связи и отношения предметов и явлений объективного мира.

Основные категории, используемые в статистике:

. Статистическая совокупность — множество социально-экономических объектов или явлений общественной жизни, объединенных качественной основой, но отличающихся друг от друга отдельными признаками, т.е. однородных в одном отношении, но разнородных в другом. Таковы, например, совокупность домохозяйств, семей, предприятий, фирм и т.п.

. Единица совокупности — первичный элемент статистической совокупности, являющийся носителем признаков и основой ведущегося при обследовании счета.

. Признак единицы совокупности — свойства единицы совокупности, которые различаются способами их измерения и другими особенностями

. Статистический показатель — понятие, отображающее количественные характеристики (размеры) или соотношения признаков общественных явлений. Статистические показатели можно подразделить на первичные (объемные) — характеризуют либо общее число единиц совокупности (объем совокупности), либо сумму значений какого-либо признака (объем признака) и выражаются абсолютными величинами и вторичные (расчетные) — задаются на единицу первичного показателя и выражаются относительными и средними величинами. Статистические показатели могут быть плановыми, отчетными и прогнозными.

. Система статистических показателей — совокупность статистических показателей, отражающая взаимосвязи, которые объективно существуют между явлениями. Она охватывает все стороны общественной жизни как на макро-, так и на микроуровне. С изменением условий жизни общества меняются и системы статистических показателей, совершенствуется методология их расчета.

16 стр., 7563 слов

Методология исследования экономических процессов и явлений. Методы ...

... явлений и процессов. Сначала экономист изучает и собирает факты, явления, касающиеся рассмотрения экономической проблемы. Далее собранные факт и и явления систематизирует, обнаруживает логические экономические связи между ними, делает обобщения, изучает их взаимодействующихдію. В экономических исследованиях применяют методы ...

Совокупность приемов, пользуясь которыми статистика исследует свой предмет, составляет метод статистики. Можно выделить 3 группы статистических методов (3 этапа статистического исследования):

. Cтатистическое наблюдение — научно организованный сбор сведений, заключающийся в регистрации тех или иных фактов, признаков, относящихся к каждой единице изучаемой совокупности;

. Сводка и группировка — обработка собранных первичных данных, включающая их группировку, обобщение и оформление в таблицах;

. Статистический анализ — на основе итоговых данных сводки рассчитываются различные обобщающие показатели в виде средних и относительных величин, выявляются определенные закономерности в распределениях, динамике показателей и т.п.

Таким образом, любое законченное статистическое исследование проходит в 3 этапа, между которыми, разумеется, могут быть перерывы во времени.

Статистические методы — методы анализа статистических данных. Выделяют методы прикладной статистики, которые могут применяться во всех областях научных исследований и любых отраслях народного хозяйства, и другие статистические методы, применимость которых ограничена той или иной сферой. Имеются в виду такие методы, как статистический приемочный контроль, статистическое регулирование технологических процессов, надежность и испытания, планирование экспериментов.

Классификация статистических методов. Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.

Целесообразно выделить три вида научной и прикладной деятельности в области статистических методов анализа данных (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы):

а) разработка и исследование методов общего назначения, без учета специфики области применения;

б) разработка и исследование статистических моделей реальных явлений и процессов в соответствии с потребностями той или иной области деятельности;

в) применение статистических методов и моделей для статистического анализа конкретных данных.

Прикладная статистика — это наука о том, как обрабатывать данные произвольной природы. Математической основой прикладной статистики и статистических методов анализа является теория вероятностей и математическая статистика.

Описание вида данных и механизма их порождения — начало любого статистического исследования. Для описания данных применяют как детерминированные, так и вероятностные методы. С помощью детерминированных методов можно проанализировать только те данные, которые имеются в распоряжении исследователя. Например, с их помощью получены таблицы, рассчитанные органами официальной государственной статистики на основе представленных предприятиями и организациями статистических отчетов. Перенести полученные результаты на более широкую совокупность, использовать их для предсказания и управления можно лишь на основе вероятностно-статистического моделирования. Поэтому в математическую статистику часто включают лишь методы, опирающиеся на теорию вероятностей.

2 стр., 918 слов

Особенности маркетинговых и социологических исследований

... практическое применение находят в прикладной социологии (например - политической) и маркетинге. Цели, задачи, методология, ограничения и анализ при проведении социологических и маркетинговых исследований существенно различаются. Остановимся ... всех формальных процедур. Если данные исследования говорят о том, что продажи должны расти, а они падают - это было плохое исследование. И никто больше никогда ...

Статистические методы — научные методы описания и изучения массовых явлений, допускающих количественное (численное) выражение. Слово статистика
(от игал. stato — государство) имеет общий корень со словом государство. Первоначально оно относилось к науке управления и означало сбор данных о некоторых параметрах жизнедеятельности государства. Со временем статистика стала охватывать сбор, обработку и анализ данных о массовых явлениях вообще; ныне статистические методы охватывают собою практически все области знаний и жизнедеятельности общества.

Статистические методы включают в себя и экспериментальное, и теоретическое начала. Статистика исходит, прежде всего, из опыта; недаром ее зачастую определяют как науку об общих способах обработки результатов эксперимента. Обработка массовых опытных данных представляет самостоятельную задачу. Иногда простая регистрация некоторых рядов наблюдений приводит к тому или иному значимому выводу. Так, если в некоторой стране из года в год растет объем валового внутреннего продукта, то это говорит об ее устойчивом развитии. Однако в большинстве случаев для обработки опытного статистического материала используются математические модели исследуемого явления, основу которых составляют идеи и методы теории вероятностей.

Теория вероятностей есть наука о массовых случайных явлениях. Массовость означает, что исследуются огромные количества однородных явлений (объектов, процессов).

Случайность же означает, что значение рассматриваемого параметра отдельного явления (объекта) в своей основе не зависит и не определяется значениями этого параметра у других явлений, входящих в ту же совокупность. Основной характеристикой массового случайного явления является распределение вероятностей. Теорию вероятностей можно определить как науку о вероятностных распределениях их свойствах, видах, законах взаимосвязей, распределении величин, характеризующих исследуемый объект, и законах изменения распределений во времени. Так, говорят о распределении молекул газа по скоростям, о распределениях доходов граждан в некотором обществе и т. д.

Эмпирически задаваемые распределения соотносятся с т. н. генеральной совокупностью, т. е. с наиболее полным теоретическим описанием распределений соответствующих массовых явлений. При этом во .многих случаях бывает нецелесообразно перебирать
все элементы рассматриваемых совокупностей либо в силу чрезвычайно большого их числа, либо в силу того, что при наличии некоторого числа перебранных элементов учет новых не внесет существенных изменений в общие результаты. Для этих случаев разработан специальный выборочный метод исследования общих свойств статистических систем на основе изучения лишь части соответствующих элементов, взятых на выборку. Так, при оценке политических симпатий граждан некоторого региона или страны перед предстоящими выборами невозможно проводить сплошной опрос граждан. В этих случаях и прибегают к выборочному методу Чтобы выборочное распределение достаточно надежно характеризовало исследуемую систему, оно должно удовлетворять специальным условиям репрезентативности. Репрезентативность требует случайного выбора элементов и учета макроструктуры всего массового явления.

3 стр., 1182 слов

Маркетинговые исследования в современной экономике

... Маркетинговые исследования - это систематическое определение, анализ и сбор круга данных, необходимых фирме, которые фокусируются на понимании поведения, желаний и предпочтений потребителей в диктуемой рынком экономике. Необходимость в ... исследования подразумевается ограниченная вещественно, во времени и в пространстве реальность. Иными словами - это изучаемая «генеральная совокупность»: ... явлениями и ...

Распределения представляют наиболее общую характеристику массовых случайных явлений. Задание исходного распределения нередко предполагает построение математической модели соответствующих областей действительности. Построение и анализ таких моделей и составляет основную направленность статистических методов. Построенная математическая модель, в свою очередь, указывает, какие переменные следует измерять и какие из них имеют основное значение. Но главное в построении математической модели состоит в объяснении исследуемых явлений и процессов. Если модель достаточно полна, то она описывает зависимости между основными параметрами этих явлений.

Статистические методы в естествознании породили многие научные теории, привели к разработке важнейших фундаментальных направлений исследования — классической статистической физики, генетики, квантовой теории, теории цепных химических реакций и др. Следует, однако, отметить, что во многих случаях исходные вероятностные распределения задаются не путем непосредственной обработки массового материала. Вероятностная гипотеза чаще всего вводится гипотетически, косвенно, на основе теоретических предпосылок. Так, в учение о газах предположение о существовании вероятностных распределений было введено как гипотеза, на основе допущений о молекулярном беспорядке
. Возможность подобного задания вероятностных распределений и проверки их справедливости обусловлена характером и природой самих распределений, математическое выражение которых обладает самостоятельными характеристиками, достаточно независимыми от конкретных значений элементов.

Особые сложности возникают при применении статистических методов в изучении социальных явлений. Анализ общих направлений социальных процессов и внутренних механизмов, вызывающих конкретные статистические результаты, необычайно трудоемок. Так, благосостояние людей характеризуется весьма многими параметрами и соответствующими распределениями — уровнем доходов, участием в общественно-полезном труде, уровнем образования и здравоохранения и др. показателями жизнедеятельности человека. Выявление взаимосвязи этих распределений и тенденций их изменения требует решения многих сложных задач. Состояние общества можно определить через такие параметры, как внутренний валовый продукт, потребление энергии на душу населения, расслоение общества по доходам и т. п. Вместе с тем общество представляет собой необычайно сложную систему, а познание сложных систем основывается на разработке многих моделей, выражающих различные аспекты их структуры и функционирования. Соответственно, для более полной характеристики состояния общества требуется оперировать весьма многими параметрами и их распределениями. Так, говорят об экономической, производственной, сельскохозяйственной, социальной и многих других статистиках. Для объединения данных этих статистик в единую целостную картину необходимо выявление субординации, иерархии параметров, характеризующих состояние общества.

3. Взаимосвязь статистики с другими науками

42 стр., 20636 слов

Фармакоэкономический анализ медикаментозного лечения больных ...

... метода фармакоэкономического анализа «общая стоимость заболевания»; 4. Определение стоимости удельного показателя экономической эффективности при лечении РА и КХ препаратами Клеритин и Алерон методом «затраты-эффективность». Объектами исследования являются: - Стандарты лечения и ...

Статистика является мультидисциплиной, так как она использует методы и принципы, заимствованные из других дисциплин. Так, в качестве теоретической базы для формирования статистической науки служат знания в области социологии и экономической теории. В рамках этих дисциплин происходит изучение законов общественных явлений. Статистика помогает произвести оценку масштаба того или иного явления, а также разработать систему методов для анализа и изучения. Статистика, несомненно, связана с математикой, так как для выявления закономерностей, оценки и анализа объекта исследования требуется ряд математических операций, методов и законов, а систематизация результатов находит отражения в виде графиков и таблиц.

4. Виды статистических исследований

Наблюдение как начальный этап исследования связано со сбором исходных данных об изучаемом вопросе. Оно свойственно многим наукам. Однако каждая наука имеет свою специфику, отличаясь по своим наблюдениям. Поэтому не всякое наблюдение — статистическое.

Статистическое исследование — это научно организованный по единой программе сбор, сводка и анализ данных (фактов) о социально-экономических, демографических и других явлениях и процессах общественной жизни в государстве с регистрацией их наиболее существенных признаков в учетной документации.

Отличительными чертами (спецификой) статистического исследования являются: целенаправленность, организованность, массовость, системность (комплексность), сопоставимость, документированность, контролируемость, практичность.

В целом статистическое исследование должно:

Иметь общественно-полезную цель и всеобщую (государственную) значимость;

Относиться к предмету статистики в конкретных условиях его места и времени;

Выражать статистический вид учета (а не бухгалтерский и не оперативный);

Проводиться по заранее разработанной программе с ее научно обоснованным методологическим и другим обеспечением;

Осуществлять сбор массовых данных (фактов), в которых отражается вся совокупность причинно-следственных и других факторов, разносторонне характеризующих явление;

Регистрироваться в виде учетных документов установленного образца;

Гарантировать отсутствие ошибок наблюдения или же сводить их к возможному минимуму;

Предусматривать определенные критерии качества и способы контроля собранных данных, обеспечивая их достоверность, полноту и содержательность;

Ориентироваться на экономически эффективную технологию сбора и обработки данных;

Быть надежной информационной базой для всех последующих этапов статистического исследования и всех пользователей статистической информацией.

Исследования, не удовлетворяющие этим требованиям, статистическими не являются. Не являются статистическими исследования, например, наблюдения и исследования: матери за играющим ребенком (личный вопрос); зрителей за театральной постановкой (нет учетной документации по зрелищу); научного работника за физико-химическими опытами с их измерениями, расчетами и документальной регистрацией (не массово-общественные данные); врача за больными с ведением медицинских карточек (оперативный учет); бухгалтера за движением денежных средств на банковском счете предприятия (бухгалтерский учет); журналистов за общественной и личной жизнедеятельностью государственных лиц или иных знаменитостей (не предмет статистики).

8 стр., 3802 слов

Муниципальное хозяйство как локальный уровень общественного сектора ...

... общественного сектора. Предметом исследования является совокупность экономических отношений, возникающих между субъектами производства общественных благ и реципиентами. Объектом исследования являются региональные аспекты производства общественных благ. Цель исследования: ... общества к экономике, основанной на знаниях, возрастает роль и значение сфер, ответственных за качество и уровень жизни человека, ...

Статистическая совокупность — множество единиц, обладающих массовостью, типичностью, качественной однородностью и наличием вариации.

Статистическая совокупность состоит из материально существующих объектов (Работники, предприятия, страны, регионы), является объектом статистического исследования.

Статистическое наблюдение является первой стадией статистического исследования, представляющий собой научно организованный сбор данных об изучаемых явлениях и процессах общественной жизни.

5. Предназначение выборочного метода

Множество всех единиц совокупности, обладающих определенным признаком и подлежащих изучению, носит в статистике название генеральной совокупности.

На практике по тем или иным причинам не всегда возможно или же нецелесообразно рассматривать всю генеральную совокупность. Тогда ограничиваются изучением лишь некоторой части ее, конечной целью которого является распространение полученных результатов на всю генеральную совокупность, т. е. применяют выборочный метод.

Для этого из генеральной совокупности особым образом отбирается часть элементов, так называемая выборка, и результаты обработки выборочных данных (например, средние арифметические значения) обобщаются на всю совокупность.

Теоретической основой выборочного метода является закон больших чисел. В силу этого закона при ограниченном рассеивании признака в генеральной совокупности и достаточно большой выборке с вероятностью, близкой к полной достоверности, выборочная средняя может быть сколь угодно близка к генеральной средней. Закон этот, включающий в себя группу теорем, доказан строго математически. Таким образом, средняя арифметическая, рассчитанная по выборке, может с достаточным основанием рассматриваться как показатель, характеризующий генеральную совокупность в целом.

Разумеется, не всякая выборка может быть основой для характеристики всей совокупности, к которой она принадлежит. Таким свойством обладают лишь репрезентативные (представительные) выборки, т. е. выборки, которые правильно отражают свойства генеральной совокупности. Существуют способы, позволяющие гарантировать достаточную репрезентативность выборки. Как доказано в ряде теорем математической статистики, таким способом при условии достаточно большой выборки является метод случайного отбора элементов генеральной совокупности, такого отбора, когда каждый элемент генеральной совокупности имеет равный с другими элементами шанс попасть в выборку. Выборки, полученные таким способом, называются случайными выборками. Случайность выборки является, таким образом, существенным условием применения выборочного метода.

Области применения выборочного метода в исторических исследованиях. Сфера приложения этого метода в изучении истории обширна. Во-первых, историки могут применять выборочный метод при проведении всякого рода обследований с целью изучения различных явлений и процессов современности. Правда, сейчас такими исследованиями больше занимаются социологи, чем историки, хотя именно историки могут проводить конкретно-социологические обследования, опираясь на исторические данные, и добиваться наибольшего эффекта таких исследований.

27 стр., 13493 слов

Статистико–экономический анализ эффективности производства молока ...

... молока, руб./ц., что, прежде всего можно объяснить тем, что направления производства данных предприятий часто различаются, соответственно, уровень производства ... n- Количество элементов в совокупности N=1+3,32*lg 23= 1+3,32*1,36=5,512=5 Разделим всю совокупность районов на 6 групп, и ... Людиновский III 23 Медынский 12 Куйбышевский 1.2. Анализ типических групп Аналитическая группировка проводится для ...

Во-вторых, историки нередко имеют дело с сохранившимися данными ранее проведенных собственно выборочных обследований. Такие обследования стали все более широко применяться с конца XIX в. Так, при проведении ряда сплошных обследований и переписей выборочно собирались и собираются сведения по более широкой программе. Многие данные собирались только выборочно. Наиболее интересными среди них для историков являются описания разного рода хозяйственных комплексов (крестьянских хозяйств, промышленных предприятий, колхозов, совхозов и т. д.), а также бюджетные и другого рода обследования различных слоев населения.

В-третьих, в распоряжении историков имеется значительное число разнообразных первичных сплошных массовых данных, полная обработка которых весьма затруднительна даже при применении современной вычислительной техники. При изучении их может быть применен выборочный метод. Такие материалы имеются по всем периодам истории, но особенно много их по истории XIX-XX вв.

Наконец, историкам очень часто приходится иметь дело с частичными данными, так называемыми естественными выборками. При обработке этих данных также может быть применен выборочный метод. Характер естественных выборок бывает различным. Прежде всего они могут представлять собой сохранившийся остаток некогда существовавшей более или менее полной совокупности данных. Так, многие актовые материалы, документы текущего делопроизводства и отчетности представляют остатки в прошлом обширных и систематических массивов данных. Далее, при систематическом сборе тех или иных сведений отдельные показатели могли учитываться лишь частично (именно частично, а не выборочно).

Так, при составлении «Экономических примечаний» к Генеральному межеванию второй половины XVIII в., которое охватило большую часть территории страны, ряд показателей (количество населения, площадь земельных угодий и др.) учитывался повсеместно, а некоторые важные данные (о величине барских запашек, размерах оброка) были собраны в силу целого ряда причин лишь частично. Многие сведения вообще собирались только частично. Это, прежде всего, относится к тем из них, которые не являлись нормативными и сбором которых занимались различные местные органы, научные и общественные организации и отдельные лица.

Итак, области выборочного метода в исторических исследованиях весьма обширны, а задачи, которые следует при этом решать, различны.

Так, при организации выборочного обследования и формировании выборки из имеющихся сплошных данных исследователь располагает определенной свободой маневра для обеспечения репрезентативности выборок. При этом он может опираться на хорошо разработанную в математической статистике теорию, методику и технику получения таких выборок.

При оперировании же данными ранее проведенных выборочных обследований следует проверить, в какой мере они были выполнены в соответствии с требованиями, предъявляемыми к выборочному методу. Для этого надо знать, как было проведено это обследование. Чаще всего это вполне можно сделать.

И совсем иное дело — естественные выборки данных, с которыми очень часто имеет дело историк. Прежде всего необходимо доказать их репрезентативность. Без этого экстраполяция показателей выборок на всю изучаемую совокупность будет необоснованной. Поскольку пока еще нет достаточно надежных методов математической проверки репрезентативности естественных выборок, то решающую роль здесь играет выяснение истории их возникновения и содержательный анализ имеющихся данных.

6. Предназначение корреляционно-регрессионного анализа

сезонный регрессионный статистический выборочный

Экономические данные почти всегда представлены в виде таблиц. Числовые данные, содержащиеся в таблицах, обычно имеют между собой явные (известные) или неявные (скрытые) связи.

Явно связанные показатели получены методами прямого счета, т. е. вычислены по заранее известным формулам. Например, вычисляются проценты выполнения плана, темпы роста, индексы и т. д.

Связи же второго типа заранее неизвестны. Однако люди должны уметь объяснять и предсказывать (прогнозировать) сложные явления для того, чтобы управлять ими. Поэтому специалисты с помощью наблюдений стремятся выявить скрытые зависимости и выразить их в виде формул, т. е. математически смоделировать явления или процессы. Одну из таких возможностей предоставляет корреляционно-регрессионный анализ.

Обратим внимание на то, что специалисты строят и используют математические модели для трех обобщенных целей — объяснения, предсказания и управления.

Представление экономических и других данных в электронных таблицах в наши дни стало простым и естественным. Оснащение же электронных таблиц средствами корреляционно-регрессионного анализа способствует тому, что из группы сложных, глубоко научных и потому редко используемых, почти экзотических методов, корреляционно-регрессионный анализ превращается для специалиста в повседневный, эффективный и оперативный аналитический инструмент.

Пользуясь методами корреляционно-регрессионного анализа, аналитики измеряют тесноту связей показателей с помощью коэффициента корреляции. При этом обнаруживаются связи, различные по силе (сильные, слабые, умеренные и др.) и различные по направлению (прямые, обратные).

Если связи окажутся существенными, то целесообразно будет найти их математическое выражение в виде регрессионной модели и оценить статистическую значимость модели. В экономике значимое уравнение регрессии используется, как правило, для прогнозирования изучаемого явления или показателя.

Поэтому регрессионный анализ называют основным методом современной математической статистики для выявления неявных и завуалированных связей между данными наблюдений. Электронные же таблицы делают такой анализ легко доступным.

7. Предназначение и методика проведения анализа сезонных колебаний

При анализе многих рядов динамики можно заметить определённую повторяемость (цикличность, закономерность в колебаниях), изменениях их уровней. Например, в большинстве отраслей экономики это проявляется в виде внутритрудовых чередований, подъёмов и спадов выпуска продукции, неодинаковым потреблением сырья и энергии, колебания уровней себестоимости, прибыли и других показателей. Ярко выраженный сезонный характер имеет сельское хозяйство, рыболовство, лесозаготовка, охота, туризм и так далее. Значительной колеблемости во внутренней динамике подвержены денежные обращения и товарооборот. Наибольшие денежные доходы образуются у населения в III и IV кварталах, особенно у селян. Максимальный объём товарооборота (различного) приходится на конец каждого года. Продажа молочных продуктов увеличивается обычно во II и III кварталах, а фруктов и овощей — во втором полугодии. Потребление пищи связано со временем суток, днями недели, временами года. Также закономерности в изменении уровней ряда динамики принято называть сезонными колебаниями.

Под сезонными колебаниями понимается более или менее устойчивые внутригодовые колебания уровней динамического рода, обусловленные спецификами развития данного явления.

Цель изучения сезонных колебаний состоит как в разработке мер его ликвидации или смягчению сезонных колебаний (нередко этим и ограничивается статистическое исследование), так и для оптимального исследования условий, благоприятствующих развитию массовых явлений и процессов.

При статистическом исследовании в рядах динамики сезонных колебаний решаются следующие две взаимосвязанные задачи: 1) выявление специфики развития изучаемого явления во внутренне годовой динамике; 2) измерение сезонных колебаний изучаемого явления с построением модели сезонной волны.

Особое внимание отражается на обеспечение сопоставимости уровней ряда. При наличии в исходном материале разновесных по продолжительности периодов времени объёмные величины пересчитываются в средние величины, характеризующие интенсивность развития изучаемого явления в единицу времени.

Для выявления сезонных колебаний обычно берутся данные за несколько последних лет, распределённые по определённым внутригодовым периодам.

Для измерения сезонных колебаний исчисляются специальные статистические показатели, которые называются индексами сезонности (Is) и совокупность которых отражает сезонную волну.

Для вычисления индексов сезонности применяются различные методы.

В общем виде индексы сезонности определяются отношением исходных (фактических) уровней первоначального ряда (y) к расчётным (теоретическим) уровням, выступающим в качестве базы сравнения.

Тем самым ликвидируется (устраняется) влияние основной тенденции (тренда).

Затем усреднением индивидуальных индексов сезонных одноимённых внутригодовых периодов анализируемого ряда динамики устраняется влияние на сезонные колебания случайных отклонений. Поэтому для каждого периода сумма определяется обобщением показателей в виде средних индексов сезонности

В зависимости от характера тренда последняя формула может быть записана по разному:

Например, коэффициенты месячной непрерывности определяются в этом случае как отношения уровня каждого месяца к среднемесячному за год. Для большей надёжности индексы сезонности обычно рассчитываются по данным за 3-5 лет. При этом для каждого месяца рассчитывается средняя величина уровня за эти 3-5 дет, которая сопоставляется с общим ежемесячным уровнем за 3-5 лет. Можно, таким образом, сначала для каждого из этих 3-5 лет рассчитать ежемесячный индекс сезонности, из которых рассчитывается затем средний индекс сезонности для каждого месяца. Результаты будут совпадать.

Поэтому для всех фактических уровней анализируемого ряда динамики общий средний уровень является постоянной величиной, то этот подход называется способом постоянной средней. В этом случае сначала выполняется предварительное аналитическое выравнивание фактических уровней и после этого исчисляется сезонная величина, но не от постоянной средней (как в предыдущем случае), а от выровненных данных.

Измерение сезонных колебаний на базе переменных уровней тренда (расчётных уровней ряда) в статистике получило название способы переменной средней. Есть и другие, более сложные методы расчета индексов сезонности. Например, если все колебания членов первоначального ряда объясняются только (или в основном) сезонными причинами, то уравнение тренда выражает только сезонные колебания. Следовательно, изучение сезонного колебания сводится к проблеме выбора адекватной математической функции. Однако наилучшее с точки зрения отражения сезонных колебаний нагрузки уравнения выбирают по минимуму среднего квадратичного индексов сезонности 100 %.

Список литературы

1. Гусаров В.М. Теория статистики: М.: «Аудит», издательское объединение «ЮНИТИ», 2010.

2. Лапунина Л., Четверина Т. Напряженность на Российском рынке и механизмы ее преодоления: Вопросы экономики, N 2, 2008.

. Общая теория статистики: статистическая методология в изучении коммерческой деятельности, Учебник / под редакцией А.А. Спирина, О.Э. Башиной: М.: «Финансы и статистика», 2009.

. Сабирьянова К. Микроэкономический анализ динамических изменений на Российском рынке труда. Вопросы экономики, N 1, 2012.

. Социальная статистика: Учебник/ Под ред. чл.-кор. РАН И.И. Елисеевой.- 3-е изд., перераб. и доп.- М.: Финансы и статистика, 2011.- 480 с.